TRABAJO DE INFORMATICA - COMPONENTES DE LA INFORMATICA A)EQUIPO DE COMPUTIO B)TIPOS DE COMPUTADORAS


 

COMPONENTES DE LA INFORMATICA
a) EQUIPO DE COMPUTO
b) TIPOS DE COMPUTADORAS
 
 
 
JOSE ALONSO FLORES FLORES
 
 
 
 
 
INFORMATICA I
 
 
 
 
CUATRIMESTRE I
 
 
 
 
MARTHA ANGELICA LUNA PEREZ
 
 
 
 
 
 
OBJETIVO
Identificar los componentes de la informatica.
El concepto de arquitectura en el entorno informático proporciona una descripción de la construcción y distribuciónfísica de los componentes de la computadora.
La arquitectura de una computadora explica la situación de sus componentes y permite determinar las posibilidades de que un sistema informático, con una determinada configuración, pueda realizar las operaciones para las que se va a utilizar.
Distinguir los diferentes tipos de computadoras.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
HARDWARE
 (pronunciación AFI: /ˈhɑːdˌwɛə/ ó /ˈhɑɹdˌwɛɚ/) es la parte física de un computador y el más amplio de cualquier dispositivo electrónico. El término proviene del inglés[1] y es definido por la RAE como el "Conjunto de los componentes que integran la parte material de una computadora" [2] , sin embargo, es usual que sea utilizado en una forma más amplia, generalmente para describir componentes físicos de una tecnología, así el hardware puede ser de un equipo militar importante, un equipo electrónico, un equipo informático o un robot. En informática también se aplica a los periféricos de una computadora tales como el disco duro, CD-ROM, disquetera (floppy), etc. En dicho conjunto se incluyen los dispositivos electrónicos y electromecánicos, circuitos, cables, armarios o cajas, periféricos de todo tipo y cualquier otro elemento físico involucrado.
El hardware se refiere a todos los componentes físicos (que se pueden tocar), en el caso de una computadora personal serían los discos, unidades de disco, monitor, teclado, la placa base, el microprocesador, étc. En cambio, el software es intangible, existe como información, ideas, conceptos, símbolos, pero no ocupa un espacio físico, se podría decir que no tiene sustancia. Una buena metáfora sería un libro: las páginas y la tinta son el hardware, mientras que las palabras, oraciones, párrafos y el significado del texto (información) son el software. Una computadora sin software sería tan inútil como un libro con páginas en blanco.
 
 
 
 
 
 
 
 
 
 
 
 
 
SOFWARE
Software[1] (pronunciación AFI:[ˈsɔft.wɛɻ]), palabra proveniente del inglés (literalmente: partes blandas o suaves), que en nuestro idioma no posee una traducción adecuada al contexto, por lo cual se utiliza asiduamente sin traducir y fue admitida por la Real Academia Española (RAE).
La palabra «software» se refiere al equipamiento lógico o soporte lógico de un computador digital, comprende el conjunto de los componentes lógicos necesarios para hacer posible la realización de una tarea específica, en contraposición a los componentes físicos del sistema (hardware).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GABINETE
Este componente es necesario en todo computador, es el que tiene incorporado dentro la mayoría de los componentes necesarios para el funcionamiento de este y que nunca especificamos a la hora de comprar un equipo. Si compramos un equipo de "marca" o compramos un equipo de una cadena de tiendas de informática, el gabinete o caja está servida, y raramente existe la opción de hacer algún cambio, excepto, en muy pocos casos, elegir entre un gabinete de sobremesa o una mini/semi-torre o una torre.
Una buena caja es una excelente inversión, pues probablemente será el componente de nuestro flamante y recién comprado equipo que más nos durará, por lo que no debemos tener reparos en comprar una caja de buena calidad que tenga un precio ciertamente alto. En algunos casos escuchará que a la caja del computador se le definirá también como Case.
Tamaño
Estas son las elecciones posibles:
1.    Desktop (Sobremesa horizontal) , es lo ideal, si el computador va a ser utilizado en una oficina, encima de una mesa, por ocupar menos espacio, pero si la oficina está racionalizada y las mesas de trabajo bien adaptadas, uno de los errores que la gente comete a menudo es pensar que las cajas sobremesa tienen menos posibilidades de ampliación, en general tiene los mismos slots ISA y PCI, pero sí que tiene menos bahías para unidades de CD-ROM y unidades de Backup (normalemente suelen tener tres) y menos espacio interno para discos duros internos adicionales, pero en oficina el computador no es tan propenso a la ampliación como al cambio de todo el equipo, esto no suele ser un problema.
2.    Mini Tower (Mini torre vertical) es una caja colocada en forma vertical, uno de los problemas con esta es su poco espacio especialmente en formato ATX, por cuestiones de refrigeración del procesador, pues en muchos casos en la caja minitorre el chasis o la propia fuente de alimentación tapaba el procesador o incluso chocaba con él.
3.    Medium Tower (Torre mediana vertical) es la elección más acertada en la mayoría de los casos, con un tamaño ajustado y con suficientes posibilidades de expansión externa e interna. Sólo los aficionados a expandir los equipos y poseer muchos componentes internos (tarjetas, discos duros, etc.) instalados temerán, y con razón, un sobrecalentamiento. Además la potencia de la fuente de alimentación de estas cajas no está pensada para muchos componentes pero se puede cambiar.
4.    Full Tower (Torre grande vertical) están pensadas para servidores o estaciones gráficas en los que vamos a instalar gran cantidad de dispositivos, o para usuarios que se ven obligados a poner el computador en el suelo por falta de espacio (una caja más pequeña les obligaría a agacharse para insertar un disquete o un CD-ROM), o para usuarios que van a instalar gran cantidad de componentes y tienen miedo a que no circule bien el aire o a amantes del overclocking que desean espacio para que el aire circule y enfríe el procesador. Sin embargo, un gran tamaño no implica mejor refrigeración, a menos que la caja esté abierta.
 
Espacio
Hablando de espacio EXTERNO. Si vamos a colocar nuestra caja encastrada en un mueble o una mesa, atención: la parte posterior del mueble o mesa debe de estar abierta, y si el mueble o mesa está pegada a una pared, debemos dejar al menos 25cm de espacio libre, y además unos 10cm por cada lado, para que se pueda evacuar el aire. En su defecto (el mueble ya está hecho y no pensamos en ello al encargarlo) debemos colocar un ventilador en la parte frontal del equipo (si la caja tiene ranuras delanteras de salida de aire; hacérselas puede ser una chapuza y será mejor comprar otra caja) para que extraiga el aire interior.
Hablando de espacio INTERIOR, una caja de mayor tamaño no implica más espacio para trabajar cómodamente, más espacio para componentes, o mayor refrigeración.
Accesibilidad
Hay que fijarse bien en la colocación de la fuente de alimentación y el soporte de los discos duros incluso en una caja grande. En una caja pequeña, podemos necesitar hacer malabarismos para ampliar la memoria o conectar un cable al canal IDE secundario. Un detalle que se puede observar muchas veces es que por la construcción de la caja es imposible quitar los tornillos del lado derecho del disco duro e incluso cajas en las que el panel del lado derecho de la caja no se puede quitar.
Una caja en la que se puedan quitar independientemente los paneles izquierdo y derecho es muy cómoda cuando abrimos el computador con frecuencia, e incluso para los amantes del overclocking que prefieren quitar el panel izquierdo para así no tener problemas de refrigeración, y además aporta rigidez a la caja.
 
 
2. Fuente de Alimentación
Por supuesto una fuente AT para una placa AT y una fuente ATX para una placa ATX, aunque hay que tener en cuenta que muchas placas AT modernas tienen un conector adicional para fuente ATX, la caja debe traer distintas tapas para los conectores, entre ellas una para conectores de placa AT. Muchas personas identifican la fuente AT porque poseen dos conectores que van a la placa base y la ATX porque solo poseen un conector y el apagado de la placa base es automático
3. MAIN BOARD, MOTHER BOARD, BOARD O TARJETA PRINCIPAL
La Tarjeta Madre, también conocida como Tarjeta Principal, Mainboard, Motherboard, etc. es el principal y esencial componente de toda computadora, ya que allí donde se conectan los demás componentes y dispositivos del computador.
La Tarjeta Madre contiene los componentes fundamentales de un sistema de computación. Esta placa contiene el microprocesador o chip, la memoria principal, la circuitería y el controlador y conector de bus.
Además, se alojan los conectores de tarjetas de expansión (zócalos de expansión), que pueden ser de diversos tipos, como ISA, PCI, SCSI y AGP, entre otros. En ellos se pueden insertar tarjetas de expansión, como las de red, vídeo, audio u otras.
Aunque no se les considere explícitamente elementos esenciales de una placa base, también es bastante habitual que en ella se alojen componentes adicionales como chips y conectores para entrada y salida de vídeo y de sonido, conectores USB, puertos COM, LPT y conectores PS/2 para ratón y teclado, entre los más importantes.
Físicamente, se trata de una placa de material sintético, sobre la cual existe un circuito electrónico que conecta diversos componentes que se encuentran insertados o montados sobre la misma, los principales son:
·         Microprocesador o Procesador: (CPU – Unidad de Procesamiento Central) el cerebro del computador montado sobre una pieza llamada zócalo o slot
·         Memoria principal temporal: (RAM – Memoria de acceso aleatorio) montados sobre las ranuras de memoria llamados generalmente bancos de memoria.
·         Las ranuras de expansión: o slots donde se conectan las demás tarjetas que utilizará el computador como por ejemplo la tarjeta de video, sonido, modem, red, etc.
·         Chips: como puede ser la BIOS, los Chipsets o contralodores.
 
Ejemplo de una tarjeta Madre o Principal:
Para ver el gráfico seleccione la opción "Descargar" del menú superior 
Tipos de Tarjetas
Las tarjetas madres o principales existen en varias formas y con diversos conectores para dispositivos, periféricos, etc. Los tipos más comunes de tarjetas son:
ATX
Para ver el gráfico seleccione la opción "Descargar" del menú superior 
Son las más comunes y difundidas en el mercado, se puede decir que se están convirtiendo en un estándar y pueden llegar a ser las únicas en el mercado informático. Sus principales diferencias con las AT son las de mas fácil ventilación y menos enredo de cables, debido a la colocación de los conectores ya que el microprocesador suele colocarse cerca del ventilador de la fuente de alimentación y los conectores para discos cerca de los extremos de la placa. Además, reciben la electricidad mediante un conector formado por una sola pieza.
AT ó Baby-AT
Baby AT: Fue el estándar durante años , formato reducido del AT, y es incluso más habitual que el AT por adaptarse con mayor facilidad a cualquier caja, pero los componentes están más juntos, lo que hace que algunas veces las tarjetas de expansión largas tengan problemas. Poseían un conector eléctrico dividido en dos piezas a diferencias de las ATX que esta formado por una sola pieza mencionado anteriormente.
 
Diseños propietarios
Pese a la existencia de estos típicos y estándares modelos, los grandes fabricantes de ordenadores como IBM, Compaq, Dell, Hewlett-Packard, Sun Microsystems, etc. Sacan al mercado placas de tamaños y formas diferentes, ya sea por originalidad o simplemente porque los diseños existentes no se adaptan as sus necesidades. De cualquier modo, hasta los grandes de la informática usan cada vez menos estas particulares placas, sobre todo desde la llegada de las placas ATX.
 
 
 
El microprocesador: (CPU) (siglas de C entral P rocessing U nit).
También llamada procesador, es el chip o el conjunto de chips que ejecuta instrucciones en datos, mandados por el software. La CPU o cerebro del PC se inserta en la placa base en un zócalo especial del que hablaremos más adelante.
Dependiendo de la marca y del modelo del procesador se debe adquirir la board para que sean compatibles. Cualquier placa base moderna soporta los procesadores de INTEL, pero no todas soportan el Pentium 233 MMX o el Pentium II 450. Otra cuestión muy diferente es el soporte de los procesadores de AMD o CYRIX, especialmente en sus últimas versiones (K6-2 de AMD, MII de Cyrix/IBM), es decir diferentes compañías desarrollan su propio zócalo para conectar su CPU.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Tipos de zócalo o socket:
PGA:Es un conector cuadrado, la cual tiene orificios muy pequeños en donde encajan los pines cuando se coloca el microprocesador a presión.
ZIF:(Zero Insertion Force – Cero fuerza de inserción) Eléctricamente es como un PGA, la diferencia es que posee un sistema mecánico que permite introducir el chip sin necesidad de presión alguna, eliminando la posibilidad de dañarlo, tanto al introducirlo como extraerlo.
Surgió en la época del 486 y sus distintas versiones (Socket's 3, 5 y 7, principalmente) se han utilizado hasta que apareció el Pentium II. Actualmente se fabrican tres tipos de zócalos ZIF:
Socket 7:variante del Socket 7 que se caracteriza por poder usar velocidades de bus de hasta 100 MHz, que es el que utilizan los chips AMD K6-2.
Socket 370 ó PGA 370:físicamente similar al anterior, pero incompatible con él por utilizar un bus distinto.
Socket A: utilizado únicamente por algunos AMD K7 Athlon y por los AMD Duron.
Slot 1:Es un nuevo medio de montaje para chips. Físicamente muy distinto al anterior. Es una ranura muy similar a un conector PCI o ISA que tiene los contactos o conectores en forma de peine.
Slot A: La versión de AMD contra el Slot 1; físicamente ambos "slots" son iguales, pero son incompatibles ya que Intel no tubo ninguna intención de vender la idea y es utilizado únicamente por el AMD K7 Athlon.
Cabe anotar que las marcas más consolidadas en el mercado son Intel y AMD, siendo ambos fuertes competidores entre si. Intel maneja principalmente dos modelos de procesadores: Pentium y Celeron, siendo el uno más costoso que el otro (Esto se debe a la diferencia de cantidad de memoria caché que tienen). Al igual AMD maneja dos tipos o modelos de procesadores: Athlon y Duron. Al igual que Intel manejan una diferencia de precios entre los dos, es decir ambas compañías ofrecen un modelo costoso y otro de menor valor, esto previendo satisfacer el mercado adquisitivo. La calidad de ambas marcas y de cualquier modelo es muy buena, no se deben demeritar ninguno. Actualmente se viene presentando un aval de Microsoft para su sistema operativoWindows XP con las nuevas versiones de Athlon de AMD. La tabla enseña los procesadores AMD e Intel en ambas versiones.

 
AMD
Intel
Versión Costosa
Athlon
Pentium
Versión económica
Duron
Celeron

Otros:
En ocasiones, no existe zócalo en absoluto, sino que el chip está soldado a la placa, en cuyo caso a veces resulta hasta difícil de reconocer. Es el caso de muchos 8086, 286 y 386SX ó bien se trata de chips antiguos como los 8086 ó 286, que tienen forma rectangular alargada parecida al del chip de la BIOS y pines ó patitas planas en vez de redondas, en este caso, el zócalo es asimismo rectangular, del modelo que se usa para multitud de chips electrónicos de todo tipo. Actualmente sé esta utilizando el Soket A similar al Zócalo 370 pero de menor tamaño es utilizado por los Pentium IV.
Enfriamiento
Los microprocesadores almacenan grande cantidades de calor, debido a los procesos y gran trabajo que este realiza, es por eso que necesitan un sistema de enfriamiento o refrigeración que permita mantener un nivel de calor óptimo para evitar así que se queme y este trabaje adecuadamente sin que se recaliente.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Comúnmente estos componentes se colocan encima del chip y esta compuesto de aluminio que es un material fácil de enfriarse debido a su composición y se aseguran mediante un gancho metálico, acompañado de un extractor o disipador de calor para enfriar el aluminio y mantener la temperatura.
 
 
Ranuras de Memoria
Son los conectores donde se inserta la memoria principal de la PC, llamada RAM.
Estos conectores han ido variando en tamaño, capacidad y forma de conectarse, Este proceso ha seguido hasta llegar a los actuales módulos DIMM y RIMM de 168/184 contactos.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Chip BIOS / CMOS
La BIOS (Basic Input Output System – Sistema básico de entrada / salida) es un chip que incorpora un programa que se encarga de dar soporte al manejo de algunos dispositivos de entrada y salida. Físicamente es de forma rectangular y su conector de muy sensible.
Además, el BIOS conserva ciertos parámetros como el tipo de algunos discos duros, la fecha y hora del sistema, etc. los cuales guarda en una memoria del tipo CMOS, de muy bajo consumo y que es mantenida con una pila cuando el sistema sin energía. Este programa puede actualizarse, mediante la extracción y sustitución del chip que es un método muy delicado o bien mediante software, aunque sólo en el caso de las llamadas Flash-BIOS.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Ranuras de expansión:
Son las ranuras donde se insertan las tarjetas de otros dispositivos como por ejemplo tarjetas de vídeo, sonido, módem, etc. Dependiendo la tecnología en que se basen presentan un aspecto externo diferente, con diferente tamaño e incluso en distinto color.
·         ISA: Una de las primeras, funcionan a unos 8 MHz y ofrecen un máximo de 16 MB/s, suficiente para conectar un módem o una placa de sonido, pero muy poco para una tarjeta de vídeo. Miden unos 14 cm y su color suele ser generalmente negro.
·         Vesa Local Bus: empezaron a a usarse en los 486 y estos dejaron de ser comúnmente utilizados desde que el Pentium hizo su aparición, ya que fue un desarrollo a partir de ISA, que puede ofrecer unos 160 MB/s a un máximo de 40 MHz. eran muy largas de unos 22 cm, y su color suele ser negro con el final del conector en marrón u otro color.
·         PCI: es el estándar actual. Pueden dar hasta 132 MB/s a 33 MHz, lo que es suficiente para casi todo, excepto quizá para algunas tarjetas de vídeo 3D. Miden unos 8,5 cm y casi siempre son blancas.
·        
AGP: actualmente se utiliza exclusivamente para conectar tarjetas de vídeo 3D, por lo que sólo suele haber una. Según el modo de funcionamiento puede ofrecer 264 MB/s o incluso 528 MB/s. Mide unos 8 cm, se encuentra a un lado de las ranuras PCI, casi en la mitad de la tarjeta madre o principal.
La mayoría de las tarjetas madres o principales tienen más ranuras PCI, entre 5 y 6, excepto algunas tarjetas madre que tienen Una ya que manejan el sonido, video, módem y fax de forma integrada mediante chips. Generalmente tienen una ranura ISA por cuestiones de compatibilidad o emergencia y una ranura AGP. Algunas cuentan con una ranura adicional para el caché externo muy similar a las ranuras de AGP.
Conectores más comunes:

Conectores Externos
Son conectores para dispositivos periféricos externos como el teclado, ratón, impresora, módem externo, cámaras web, cámaras digitales, scanner, tablas digitalizadoras, entre otras. En las tarjetas AT lo único que está en contacto con la tarjeta son unos cables que la unen con los conectores en sí, excepto el de teclado que sí está soldado a la propia tarjeta. En las tarjetas ATX los conectores están todos concentrados y soldados a la placa base.

Conectores Internos
Son conectores para dispositivos internos, como pueden ser la unidad de disco flexible o comúnmente llamada disquete, el disco duro, las unidades de CD, etc. Además para los puertos seriales, paralelo y de juego si la tarjeta madre no es de formato ATX.  Antiguamente se utilizaba una tarjeta que permitía la conexión con todos estos tipos de dispositivos. Esta tarjeta se llamaba tarjeta controladora.
Para este tipo de conectores es necesario identificar el PIN número 1 que corresponde al color Rojo sólido o punteado y orienta la conexión al PIN 1 del conector de la tarjeta principal.
Conectores Eléctricos
En estos conectores es donde se le da vida a la computadora, ya que es allí donde se le proporciona la energía desde la fuente de poder a la tarjeta madre o principal. En la tarjeta madre AT el conector interno tiene una serie de pines metálicos salientes y para conectarse se debe tomar en cuenta que consta de cuatro cables negros (dos por cable), que son de polo a tierra y deben estar alienados al centro. En las tarjetas ATX, estos conectores tiene un sistema de seguridad en su conector plástico, para evitar que se conecte de una forma no adecuada; puede ser una curva o una esquina en ángulo. Una de las ventajas de las fuentes ATX es que permiten el apagado del sistema por software; es decir, que al pulsar "Apagar el sistema" en Windows el sistema se apaga solo.
Para ver los gráficos seleccione la opción "Descargar" del menú superior
Pila del computador
La pila permite suministrar la energía necesaria al Chip CMOS para que el BIOS se mantenga actualizado con los datos configurados. Esta pila puede durar entre 2 a 5 años y tiene voltaje de 3.5 V y es muy similar a las del reloj solo que un poco más grande. La forma de conectarse es muy fácil, ya que las mayorías de las tarjetas madre incorporan un pequeño conector para ella en donde ajusta a presión.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
El Microprocesador
Unidad central de proceso (conocida por sus siglas en inglés, CPU), circuito microscópico que interpreta y ejecuta instrucciones. La CPU se ocupa del control y el proceso de datos en las computadoras. Generalmente, la CPU es un microprocesador fabricado en un chip, un único trozo de silicio que contiene millones de componentes electrónicos.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
El microprocesador de la CPU está formado por una unidad aritmético-lógica que realiza cálculos y comparaciones, y toma decisiones lógicas (determina si una afirmación es cierta o falsa mediante las reglas del álgebra de Boole); por una serie de registros donde se almacena información temporalmente, y por una unidad de control que interpreta y ejecuta las instrucciones. Para aceptar órdenes del usuario, acceder a los datos y presentar los resultados, la CPU se comunica a través de un conjunto de circuitos o conexiones llamado bus. El bus conecta la CPU a los dispositivos de almacenamiento (por ejemplo, un disco duro), los dispositivos de entrada (por ejemplo, un teclado o un mouse) y los dispositivos de salida (por ejemplo, un monitor o una impresora).
El microprocesador es un tipo de circuito integrado. Los circuitos integrados, también conocidos como microchips o chips, son circuitos electrónicos complejos y están formados por componentes microscopicos formados en una única pieza plana de un material conocido como semiconductor. Estos incorporan millones de transistores, además de otros componentes como resistencias, diodos, condensadores, etc. Todo ello a un tamaño aproximado de 4 x 4 centimetros, cuentan con muchos pines conectores y generalmente la placa es de color gris.
Un microprocesador consta de varias partes. La unidad aritmético-lógica (ALU, siglas en inglés) efectúa cálculos con números y toma decisiones lógicas; los registros son zonas de memoria especiales para almacenar información temporalmente; la unidad de control descodifica los programas; los buses transportan información digital a través del chip y de la computadora; la memoria local se emplea para los cómputos realizados en el mismo chip. Los microprocesadores más complejos contienen a menudo otras secciones; por ejemplo, secciones de memoria especializada denominadas memoria cache , que sirven para acelerar el acceso a los dispositivos externos de almacenamiento de datos. Los microprocesadores modernos funcionan con una anchura de bus de 64 bits (un bit es un dígito binario, una unidad de información que puede ser un uno o un cero): esto significa que pueden transmitirse simultáneamente 64 bits de datos.
Cuando se ejecuta un programa, el registro de la CPU, llamado contador de programa, lleva la cuenta de la siguiente instrucción, para garantizar que las instrucciones se ejecuten en la secuencia adecuada. La unidad de control de la CPU coordina y temporiza las funciones de la CPU, tras lo cual recupera la siguiente instrucción desde la memoria. En una secuencia típica, la CPU localiza la instrucción en el dispositivo de almacenamiento correspondiente. La instrucción viaja por el bus desde la memoria hasta la CPU, donde se almacena en el registro de instrucción. Entretanto, el contador de programa se incrementa en uno para prepararse para la siguiente instrucción. A continuación, la instrucción actual es analizada por un descodificador, que determina lo que hará la instrucción. Cualquier dato requerido por la instrucción es recuperado desde el dispositivo de almacenamiento correspondiente y se almacena en el registro de datos de la CPU. A continuación, la CPU ejecuta la instrucción, y los resultados se almacenan en otro registro o se copian en una dirección de memoria determinada.
Un cristal oscilante situado en el computador proporciona una señal de sincronización, o señal de reloj, para coordinar todas las actividades del microprocesador. La velocidad de reloj de los microprocesadores más avanzados es de unos 800 megahercios (MHz) —unos 800 millones de ciclos por segundo—, lo que permite ejecutar más de 1.000 millones de instrucciones cada segundo.
4. El Microprocesador en las Computadoras
Un sistema de computadora cuenta con una unidad que ejecuta instrucciones de programas. Esta unidad se comunica con otros dispositivos dentro de la computadora, y a menudo controla su operación. Debido al papel central de tal unidad se conoce como unidad central de procesamiento (microprocesador), o CPU (Central processing unit).
Dentro de muchas computadoras, un dispositivo como una unidad de entrada, o uno de almacenamiento masivo, puede incorporar una unidad de procesamiento propia, sin embargo tal unidad de procesamiento, aunque es central para su propio subsistema, resulta claro que no es "central" para el sistema de computadora en su conjunto. Sin embargo, los principios del diseño y operación de una CPU son independientes de su posición en un sistema de computadora. Este trabajo estará dedicado a la organización del hardware que permite a una CPU realizar su función principal: traer instrucciones desde la memoria y ejecutarlas.
El microprocesador se lo conoce también con el nombre de "CPU" aunque algunos le llaman así a la caja con todos sus componentes internos.
La CPU no reconoce los números que maneja ya que sólo se trata de una máquina matemática, la razón por la cual nuestra computadora puede proveernos de un entorno cómodo para trabajar o jugar es que los programas y el hardware "entienden" esos números y pueden hacer que la CPU realice ciertas acciones llamadas instrucciones.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Partes principales del  microprocesador:
Encapsulado: es lo que rodea a la oblea de silicio en sí, para darle consistencia, impedir su deterioro como por ejemplo por oxidación con el aire y permitir el enlace con los conectores externos que lo acoplarán a su zócalo o a la placa base directamente.
Memoria caché: una memoria ultrarrápida que almacena ciertos bloques de datos que posiblemente serán utilizados en las siguientes operaciones sin tener que acudir a la memoria RAM, aumentando as í la velocidad y diminuyendo la el número de veces que la PC debe acceder a la RAM. Se la que se conoce como caché de primer nivel, L1 (level 1) ó caché interna, es decir, la que está más cerca del micro, tanto que está encapsulada junto a él, todos los micros tipo Intel desde el 486 tienen esta memoria.
Coprocesador matemático: es la FPU (Floating Point Unit - Unidad de coma Flotante) parte del micro especializada en esa clase de cálculos matemáticos; también puede estar en el exterior del micro, en otro chip.
Unidad lógica aritmética (ALU): es el último componente de la CPU que entra en juego. La ALU es la parte inteligente del chip, y realiza las funciones de suma, resta, multiplicación o división. También sabe cómo leer comandos, tales como OR, AND o NOT. Los mensajes de la unidad de control le dicen a la ALU qué debe hacer .
Unidad de control: es una de las partes más importantes del procesador, ya que regula el proceso entero de cada operación que realiza. Basándose en las instrucciones de la unidad de decodificación, crea señales que controlan a la ALU y los Registros. La unidad de control dice qué hacer con los datos y en qué lugar guardarlos. Una vez que finaliza, se prepara para recibir nuevas instrucciones.
Prefetch Unit: esta unidad decide cuándo pedir los datos desde la memoria principal o de la caché de instrucciones, basándose en los comandos o las tareas que se estén ejecutando. Las instrucciones llegan a esta unidad para asegurarse de que son correctas y pueden enviarse a la unidad de decodificación.
Unidad de decodificación: se encarga, justamente, de decodificar o traducir los complejos códigos electrónicos en algo fácil de entender para la Unidad Aritmética Lógica (ALU) y los Registros .
Registros: son pequeñas memorias en donde se almacenan los resultados de las operaciones realizadas por la ALU por un corto período de tiempo.
Velocidad del Reloj
En la CPU, todas las partes internas trabajan sincronizadas, gracias a un reloj interno que actúa como metrónomo. Con cada ciclo de reloj, el micro puede ejecutar una instrucción del software.
La velocidad de reloj es la cantidad de ciclos por segundo generados, cuanto más alto sea ese valor, más veloz será la PC típicamente, un micro cualquiera trabaja a una velocidad de unos 500 MHz y más, lo cual significa 500 millones de ciclos por segundo.
Debido a la extrema dificultad de fabricar componentes electrónicos que funcionen a las inmensas velocidades de MHz habituales hoy en día, todos los micros modernos tienen 2 velocidades:
·         Velocidad interna: la velocidad a la que funciona el micro internamente 200, 333, 450, 500, 750, 1000, etc. etc. MHz.
·         Velocidad externa o de bus: o también FSB, la velocidad con la que se comunican el micro y la placa base, típicamente, 33, 60, 66, 100, 133, 200, 233, etc. etc. MHz.
¿Qué es el multiplicador?
 Es la cifra por la que se multiplica la velocidad externa o de la placa base para dar la interna o del micro, por ejemplo, un AMD K6-II a 550 MHz o un Pentium III, utiliza una velocidad de bus de 100 MHz y un multiplicador 5,5x.
¿Qué es la unidad de bus?
 Es por donde fluyen los datos desde y hacia el procesador , es decir, que los datos viajan por caminos (buses) que pueden ser de 8, 16, 32 y en micros modernos hasta 64 bits, (mas precisamente son 8, 16, etc. líneas de datos impresas en el micro)ya sea por dentro del chip (internamente) o cuando salen (externamente), por ejemplo para ir a la memoria principal (RAM) .
LA MEMORIA RAM
La memoria RAM (Random Access Memory , Memoria de Acceso Aleatorio) es donde se guardan los datos que están utilizando en el momento y es temporal.
Físicamente, los chips de memoria son de forma rectangular y suelen ir soldados en grupos a una placa con "pines" o contactos.
La RAM a diferencia de otros tipos de memoria de almacenamiento, como los disquetes o los discos duros, es que la RAM es mucho más rápida, y se borra cuando se apaga el computador.
Cuanta más memoria RAM se tenga instalada mejor. Actualmente lo recomendable es 128 MB o superior, aunque con 64 MB un equipo con windows 98 correría bien. La cantidad de memoria depende del tipo de aplicaciones que se ejecuten en el computador, por ejemplo si un equipo que será utilizado para editar video y sonido, necesita al menos 512 MB o más para poder realizar tareas complejas que implican el almacenamiento de datos de manera temporal.
Módulos de Memoria
Los tipos de placas en donde se encuentran los chips de memorias, comúnmente reciben el nombre de módulos y estos tienen un nombre, dependiendo de su forma física y evolución tecnológica. Estos son:
SIP: (Single In-line Packages – Paquetes simples de memoria en línea) estos tenían pines en forma de patitas muy débiles, soldadas y que no se usan desde hace muchos años. Algunas marcas cuentan con esas patitas soldadas a la placa base pero eran difíciles de conseguir y muy costosas.
SIMM: (Single In-line Memory Module – Módulos simples de memoria en línea) existen de 30 y 72 contactos. Los de 30 contactos manejan 8 bits cada vez, por lo que en un procesador 386 ó 486, que tiene un bus de datos de 32 bits, necesitamos usarlos de 4 en 4 módulos iguales. los de 30 contactos miden 8,5 cm y los de 72 contactos 10,5 cm. Las ranuras o bancos en donde se conectan esta memorias suelen ser de color blanco.
Los SIMM de 72 contactos manejan 32 bits, por lo que se usan de 1 en 1 en los 486; en los Pentium se haría de 2 en 2 módulos (iguales), porque el bus de datos de los Pentium es el doble de grande (64 bits).
DIMM: (Dual In-line Memory Module – Módulos de memoria dual en línea) de 168 y 184 contactos, miden unos 13 a 15 cm y las ranuras o bancos son generalmente de color negro, llevan dos ganchos plasticos de color blanco en los extremos para segurarlo. Pueden manejar 64 bits de una vez, Existen de 5, 3.3, 2.5 voltios.
RIMM: (Rambus In-line Memory Module) de 168 contactos, es el modelo mas nuevo en memorias y es utilizado por los últimos Pentium 4, tiene un diseño moderno, un bus de datos más estrecho, de sólo 16 bits (2 bytes) pero funciona a velocidades mucho mayores, de 266, 356 y 400 MHz. Además, es capaz de aprovechar cada señal doblemente, de forma que en cada ciclo de reloj envía 4 bytes en lugar de 2.
Tipos de Memoria
Existen muchos tipos de memoria, por lo que solo se mostraran las más importantes.
DRAM (Dinamic-RAM): es la original, y por lo tanto la más lenta, usada hasta la época del 386, su velocidad de refresco típica era de 80 ó 70 nanosegundos (ns), tiempo éste que tarda en vaciarse para poder dar entrada a la siguiente serie de datos. Físicamente, en forma de DIMM o de SIMM, siendo estos últimos de 30 contactos.
FPM (Fast Page): más rápida que la anterior, por su estructura (el modo de Página Rápida) y por ser de 70 ó 60 ns. Usada hasta con los primeros Pentium, físicamente SIMM de 30 ó 72 contactos (los de 72 en los Pentium y algunos 486).
EDO (Extended Data Output-RAM): permite introducir nuevos datos mientras los anteriores están saliendo lo que la hace un poco más rápida que la FPM. Muy común en los Pentium MMX y AMD K6, con refrescos de 70, 60 ó 50 ns. Físicamente SIMM de 72 contactos y DIMM de 168.
SDRAM (Sincronic-RAM): Funciona de manera sincronizada con la velocidad de la placa base (de 50 a 66 MHz), de unos 25 a 10 ns. Físicamente solo DIMM de 168 contactos, es usada en los Pentium II de menos de 350 MHz y en los Celeron.
PC100: memoria SDRAM de 100 MHz, que utilizan los AMD K6-II, III, Pentium II y micros más modernos.
PC133: memoria SDRAM de 133 MHz, similar a la anterior, con la diferencia de que funciona a 133 MHz. Provee de un ancho de banda mucho más grande.
PC266: también DDR-SDRAM ó PC2100, y sin mucho que agregar a lo dicho anteriormente, simplemente es lo mismo con la diferencia de que en vez de 100 MHz físicos se utilizan 133 MHz obteniendo así 266 MHz y 2,1 GB de ancho de banda.
PC600: o también RDRAM, de Rambus, memoria de alta gama y muy cara que utilizan los Pentium 4, se caracteriza por utilizar dos canales en vez de uno y ofrece una transferencia de 2 x 2 bytes/ciclo x 266 MHz que suman un total de 1,06 GB/seg.
PC800: también RDRAM, de Rambus, la ultima de la serie y obviamente la de mejor rendimiento, ofreciendo 2 x 2 bytes/ciclo x 400 MHz que hacen un total de 1,6 GB/seg. y como utiliza dos canales, el ancho de banda total es de 3,2 GB/seg.
EL DISCO DURO
El disco duro es el dispositivo en donde se almacena la información de manera permanente, pero puede ser borrada cuando sea necesario.
Un disco duro se organiza en discos o platos similares al disco compacto (CD) pero de un material metálico, y en la superficie de cada una de sus dos caras existen pistas, como las líneas o surcos de un disco de vinilo, y las pistas se dividen en sectores como por ejemplo una porción de Pizza. El disco duro tiene una cabeza lectora en cada lado de cada plato, y esta cabeza es movida por un motor cuando busca los datos almacenados en algún lugar específico del disco.
Los Cilindros son el parámetro de organización: el cilindro está formado por las pistas de cada cara de cada plato que están situadas unas justo encima de las otras, de modo que la cabeza no tiene que moverse para acceder a las diferentes pistas de un mismo cilindro.
En cuanto a organización lógica, cuando hacemos formato lógico lo que hacemos es agrupar los sectores en unidades de asignación (CLUSTERS) que es donde se almacenan los datos de manera organizada. Cada unidad de asignación sólo puede ser ocupado por un archivo (nunca dos diferentes), pero un archivo puede ocupar más de una unidad de asignación.
Cuando se buscan datos en el disco duro, la cabeza lee primero la tabla de asignación de archivos (FAT), que está situada al comienzo de la partición. La FAT le dice en qué pista, en qué sector y en que unidad de asignación están los datos, y la cabeza se dirige a ese punto a buscarlos.
Capacidad de Almacenamiento
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Actualmente la mayoría de las aplicaciones contienen grandes cantidades de información y ocupan mucho espacio, por lo que es necesario considerar un disco con suficiente capacidad de almacenamiento y no quedar cortos de espacio al momento de instalar nuevos programas. Un disco de 4 GB alcanza al menos para instalar un sistema operativo, pero sin todas sus demás aplicaciones complementarias. Además teniendo en cuenta que necesitaremos algunas aplicaciones de oficina, navegadores de internet, herramientas de sistema como antivirus, componentes multimedia y el almecenamiento de datos realizados en los mismo programas y archivos de imagenes, sonido y video que son grandes. En definitiva es necesario tener un disco bueno al menos con suficiente espacio adicional, no solo para el almacenamiento permanente, sino también pára el temporal, ya que algunas aplicaciones desempaquetan archivos compilados que se utilizan de manera temporal mientras se realizan otras gestiones.
Actualmente los tamaños en cuanto a la capacidad de almacenamiento de un disco duro se encuentra entre los 40 y 120 GB.
Velocidad de rotación (RPM)
RPM = Revoluciones por minuto, es la velocidad a la que giran los discos o platos internos. A mayor velocidad mayor será la transferencia de datos, pero aumentará el ruido y aumentara la temperatura debido a la velocidad, es por eso que se recomienda que los discos esten separados entre si y al igual que de los demás dispositivos como unidades de CD o entre otros que comparten el mismo espacio dentro de la caja para una mejor ventilación y rendimiento.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Existen dos tipos de revoluciones estándar; de 5400 RPM que transmiten entre 10 y 16 MB y de 7200 RPM que son más rápidos y su transferencia es alta. también hay discos SCSI que estan entre los 7200 y 10.000 RPM.
Tiempo de Acceso
Es el tiempo medio necesario que tarda la cabeza del disco en acceder a los datos que necesitamos. Realmente es la suma de varias velocidades:
·         El tiempo que tarda el disco en cambiar de una cabeza a otra cuando busca datos.
·         El tiempo que tarda la cabeza lectora en buscar la pista con los datos saltando de una a otra.
·         El tiempo que tarda la cabeza en buscar el sector correcto dentro de la pista.
Es uno de los factores más importantes a la hora de escoger un disco duro. Cuando se oye hacer ligeros clicks al disco duro, es que está buscando los datos que le hemos pedido. Hoy en día en un disco moderno, lo normal son 10 milisegundos.
Tasa de Transferencia
Este número indica la cantidad de datos un disco puede leer o escribir en la parte más exterior del disco o plato en un periodo de un segundo. Normalmente se mide en Mbits/segundo, y hoy en día, en un disco de 5400RPM, un valor habitual es 100Mbits/s.
Tipos Interfaz
Es el método de conexión utilizado por el disco duro y se pueden clasificar en dos tipos: IDE o SCSI.
Todas las tarjetas madres o principales relativamente recientes, incluso desde los 486, incorporan una controladora de interfaz IDE, que soporta dos canales, con una capacidad para dos discos cada una, lo que hace un total de hasta cuatro unidades IDE (disco duro, CD-ROM, unidad de backup, etc.)
Debemos recordar, sin embargo, que si colocamos en un mismo canal dos dispositivos IDE (e.g. disco duro+CD-Rom), para transferir datos uno tiene que esperar a que el otro haya terminado de enviar o recibir datos, y debido a la comparativa lentitud del CD-ROM con respecto a un disco duro, esto ralentiza mucho los procesos, por lo que es muy aconsejable colocar el CD-ROM en un canal diferente al de el/los discos duros.
Recientemente se ha implementado la especificación ULTRA-ATA o ULTRA DMA/33, que puede llegar a picos de transferencia de hasta 33,3MB/s. Este es el tipo de disco duro que hay que comprar, aunque nuestra controladora IDE no soporte este modo (sólo las placas base Pentium con chipset 430TX y las nuevas placas con chipsets de VIA y ALI, y la placas Pentium II con chipset 440LX y 440BX lo soportan), pues estos discos duros son totalmente compatibles con los modos anteriores, aunque no les sacaremos todo el provecho hasta que actualicemos nuestro equipo.
En cuanto al interfaz SCSI, una controladora de este tipo suele tener que comprarse aparte (aunque algunas placas de altas prestaciones integran este interfaz) y a pesar de su precio presenta muchas ventajas.
Se pueden conectar a una controladora SCSI hasta 7 dispositivos (o 15 si es WIDE SCSI) de tipo SCSI (ninguno IDE), pero no solo discos duros, CD-ROMS y unidades de BACKUP, sino también grabadoras de CD-ROM (las hay también con interfaz IDE), escáneres, muchas de las unidades de BACKUP, etc.
Otra ventaja importante es que la controladora SCSI puede acceder a varios dispositivos al mismo tiempo, sin esperar a que cada uno acabe su transferencia, como en el caso del interfaz IDE, aumentando en general la velocidad de todos los procesos.
Las tasas de transferencia del interfaz SCSI vienen determinados por su tipo (SCSI-1, Fast SCSI o SCSI-2, ULTRA SCSI, ULTRA WIDE SCSI), oscilando entre 5MB/s hasta 80MB/s. Si el equipo va a funcionar como servidor, como servidor de base de datos o como estación gráfica, por cuestiones de velocidad, el interfaz SCSI es el más recomendable.
 
 
 
 
 
Estructura básica de un disco duro
Para ver el gráfico seleccione la opción "Descargar" del menú superior
En la figura se muestra la estructura básica de un disco duro que incluye:
a.    Uno o más platos de aluminio recubiertos en ambas caras de material magnético, los cuales van montados uno sobre otro en un eje común a una distancia suficiente para permitir el paso del ensamble que mueve las cabezas. Cada de unos de estos platos es semejante a un disquete.
b.    Un motor para hacer girar los platos a una velocidad comprendida entre 3.600 y 7,200 revoluciones por minuto; aunque también encontramos discos cuya velocidad de giro alcanza las 10.000 RPM, lo que da mayor velocidad de acceso para aplicaciones especiales como la grabación de video de alta calidad.
c.    Cabezas de lectura/escritura magnética, una por cada cara.
d.    Un motor o bobina para el desplazamiento de las cabezas hacia fuera y hacia dentro de cada uno de los platos.
e.    Una etapa electrónica que sirve como interfaz entre las cabezas de lectoescritura y la tarjeta controladora de puertos y discos.
f.     Una caja hermética para protección de los platos y las cabezas contra polvo y otras impurezas peligrosas para la información.
La base física de un disco duro es similar a la de un disquete, ya que la información digital se almacena en discos recubiertos de material ferro-magnético. Los datos se graban y se leen por medio de cabezas magnéticas ubicadas en ambas caras del disco siguiendo el mismo patrón de cilindros (anillos concéntricos grabados en la superficie del disco) y sectores (particiones radiales en las cuales se divide cada uno de los cilindros). La cantidad de Bytes que se pueden grabar por sector es de 512, por lo que puede calcularse la capacidad total de un disco en Bytes multiplicando el número de cilindros por el número de cabezas, por el número de sectores y finalmente por 512 Bytes
 
1.    Las unidades CD-R (Compact Disk Recordable)
Las unidades de CD son dispositivos que permiten leer o escribir información. Un disco compacto (CD) almacena la información en medio digital, mediante código binario, o sea unos y ceros. Esta información se representa como agujeros diminutos en el material especial. Los discos compactos son físicamente redondos, similares al tamaño de un plato pequeño con un agujero en el medio, en donde la unidad puede sostenerlo. La información se graba en un material metálico muy fino y protegido por una capa plástica.
Las unidades de CD se han convertido en un estándar en el almacenamiento de información masiva y portátil, ya sea para la industria de la música como de software y juegos de computadores. Las computadoras de hoy en día cuentan por lo general con una unidad de CD-ROM que como su nombre lo dice es CD de Solo Lectura ROM = Read Only Memory y solo se limitan a leer el contenido. Sin embargo la tecnología ha evolucionado de tal forma en que los CD pueden ser reutilizados, pero con unidades y discos compactos especiales para esto.
Para leer el CD se emite un haz de láser directamente sobre dicha pista, cuando el láser toca una parte plana, es decir sin muesca, la luz es directamente reflejada sobre un sensor óptico, lo cual representa un uno (1). Si el haz toca una parte con muesca, es desviado fuera del sensor óptico y se lo interpreta como un cero (0). Todo esto sucede mientras el CD gira y tanto el láser como el sensor se mueven desde el centro hacia fuera del CD.
Unidades Lectoras (CD-ROM)
Estas unidades como su nombre lo dice, permiten leer la información de los CD, pero no pueden modificar su contenido. Estas comúnmente se colocan dentro del computador (Internas) en la parte superior de las torres.
Unidades Grabadoras (CD-R / RW)
Estas unidades permiten grabar solo en CD con capacidad para grabado. Estas unidades cambiaron la forma en que se almacenaban los datos en los hogares y el trabajo, ya que con este sistema se pueden grabar desde 650 MB de Datos o 74 MIN de Audio que fueron los primeros discos compactos hasta 700 MB de Datos y 80 MIN de audio los actuales.
Las unidades de CD-R solo pueden grabar una sola vez y no pueden volver a grabar en él, a diferencia de las unidades de Re-Escritura (CD RW) que permiten grabar y volver a grabar en el mismo disco, hasta permiten borrar el disco completamente y volver a grabar nueva información cuantas veces sea necesario.
Unidades de DVD
El DVD funciona bajo los mismos principios y esta compuesto por los mismos materiales de un CD. La diferencia es que la espiral dentro del disco es mucho mas densa (fina), lo que hace que las muescas sean más chicas y las pistas mas largas. También tienen la capacidad de almacenar información en las dos caras del disco, lo que le permite contar con capacidades de almacenamiento de hasta 17 GB a diferencia de los CD convencionales que pueden almacenar 650, 700 MB. Existen unidades de CD DVD multizonas que pueden reproducir películas que son de estreno en otros países, este sistema fue inventado precisamente ya que las películas no se estrenan al mismo tiempo en todos los países y es necesario controlar la distribución de las mismas para evitar la piratería.
El DVD permite almacenar desde 4.5 o 4.7 GB de datos (disco de una cara sencilla) hasta 17 GB (disco de dos caras con doble estratificación), es decir, de 7 a 26 veces la capacidad de un CD ROM, con la ventaja de que la unidad reproductora es compatible con los CD y los CD-ROM comunes.
Esta gran capacidad, junto con las nuevas tecnologías de compresión de datos, audio y video, permite por ejemplo, almacenar en un mismo disco hasta 10 millones de páginas de texto, dos películas completas con traducciones a varios idiomas y cientos de piezas musicales, permite grabar una película entera, con calidad de imagen digital, en un disco de dimensiones idénticas a los populares CDs de audio, de hecho, su principio de operación es prácticamente idéntico al de un disco compacto tradicional, sólo que ahora se emplea un láser de menor longitud de onda, lo que significa que la información puede ser grabada en pits más pequeños y en una menor separación entre pistas. Además, se utiliza un método de compresión de datos y grabación en capas o estratos, lo que incrementa la capacidad de almacenamiento.
La extraordinaria densidad de información, es ideal para las modernas aplicaciones multimedia que necesitan imágenes de alta resolución o grandes cantidades de video y audio digitalizado, sólo como referencia, algunos juegos de computadora necesitan de varios CD-ROMs, los cuales podrían ser sustituidos fácilmente por un DVD.
Velocidad de lectura
Cuanta mayor sea la velocidad, mejor será la respuesta del sistema a la hora de leer o grabar la información desde el CD. Los valores que se han ido tomando, son 1x, 2x, 3x, ... 36x y 40x. Cada X equivale a 150 Kb/seg. Actualmente existen de 48X 52X, 56X, etc. Sin embargo hay que tomar en cuenta que no todas las unidades de CD-RW graban a velocidades tan altas, si se desea hacer, hay que adquirir un disco compacto que soporte el copiado a dicha velocidad.
 
Un CD-R puede retener información por más de 100 años. En el mercado actual, son muchas las opciones que se ofrecen con respecto a este tipo de medio de almacenamiento. Ya son muchos los fabricantes de este tipo de unidades entre los que podemos destacar a Hewlett Packard, Sony, Philips, Panasonic, LG, entre otros.
Tarjetas de video
La cantidad de imágenes que puede desplegar un monitor está definida tanto la tarjeta de video como por la resolución de colores de la pantalla. La tarjeta de video es un dispositivo que permite enviar la información de video que el monitor desplegará. Físicamente consiste en una placa de circuitos con chips para la memoria y otros necesarios para enviar la información al monitor.
Esta se conecta a la tarjeta madre del computador a través de un conector, dependiendo de la tecnología actual.
Durante la década de 1980, cuando la mayor parte de las PC ejecutaban DOS y no Windows, la pantalla desplegaba caracteres ASCII. Hacer esto requería poco poder de procesamiento porque sólo había 256 caracteres posibles y 2000 posiciones de texto en la pantalla.
Las interfaces gráficas envían información al controlador de video sobre cada pixel en la pantalla. Con una resolución mínima de 640 x 480, hay que controlar 307 200 pixeles. La mayoría de los usuarios corren sus monitores con 256 colores, así que cada pixel requiere un Byte de información. Por tanto, la computadora debe enviar 307 200 Bytes al monitor para cada pantalla.
Si el usuario desea más colores o una resolución superior, la cantidad de datos puede ser mucho mayor. Por ejemplo, para la cantidad máxima de color (24 bits por pixel producirán millones de colores) a 1 204 x 768, la computadora debe enviar 2 359 296 Bytes al monitor para cada pantalla.
El procedimiento de estas demandas de procedimiento es que los controladores de video han incrementado grandemente su potencia e importancia. Hay un microprocesador en el controlador de video y la velocidad del chip limita la velocidad a la que el monitor puede refrescarse. En la actualidad, la mayor parte de los controladores de video también incluyen al menos 2 MB de RAM de video o VRAM.
MDA (Adaptador de Pantalla Monocromo)
Las primeras PC's solo visualizaban textos. El MDA contaba con 4KB de memoria de video RAM que le permitía mostrar 25 líneas de 80 caracteres cada una con una resolución de 14x9 puntos por carácter.
Placa gráfica Hércules
Con ésta placa se podía visualizar gráficos y textos simultáneamente. En modo texto, soportaba una resolución de 80x25 puntos. En tanto que en los gráficos lo hacía con 720x350 puntos, dicha placa servía sólo para gráficos de un solo color.
La placa Hércules tenía una capacidad total de 64k de memoria video RAM. Poseía una frecuencia de refresco de la pantalla de 50HZ.
CGA (Color Graphics Adapter)
La CGA utiliza el mismo chip que la Hércules y aporta resoluciones y colores distintos. Los tres colores primarios se combinan digitalmente formando un máximo de ocho colores distintos. La resolución varía considerablemente según el modo de gráficos que se esté utilizando, como se ve en la siguiente lista:
·         160 x 100 puntos con 16 colores.
·         320 x 200 puntos con 4 colores.
·         640 x 200 puntos con 2 colores.
 EGA (Enchanced Graphics Adapter)
Se trata de una placa gráfica superior a la CGA. En el modo texto ofrece una resolución de 14x18 puntos y en el modo gráfico dos resoluciones diferentes de 640x200 y 640x350 a 4 bits, lo que da como resultado una paleta de 16 colores, siempre y cuando la placa esté equipada con 256KB de memoria de video RAM.
VGA (Video Graphics Adapter)
Significó la aparición de un nuevo estándar del mercado. Esta placa ofrece una paleta de 256 colores, dando como resultado imágenes de colores mucho más vivos. Las primeras VGA contaban con 256KB de memoria y solo podían alcanzar una resolución de 320x200 puntos con la cantidad de colores mencionados anteriormente. Primero la cantidad de memoria video RAM se amplió a 512KB, y más tarde a 1024KB, gracias a ésta ampliación es posible conseguir una resolución de, por ejemplo, 1024x768 pixeles con 8 bits de color. En el modo texto la VGA tiene una resolución de 720x400 pixeles, además posee un refresco de pantalla de 60HZ, y con 16 colores soporta hasta 640X480 puntos.
SVGA (Super Video Graphics Adapter)
La placa SVGA contiene conjuntos de chips de uso especial, y más memoria, lo que aumenta la cantidad de colores y la resolución.
El acelerador gráfico
La primera solución que se encontró para aumentar la velocidad de proceso de los gráficos consistió en proveer a la placa de un circuito especial denominado acelerador gráfico. El acelerador gráfico se encarga de realizar una serie de funciones relacionadas con la presentación de gráficos en la pantalla, que de otro modo, tendría que realizar el procesador. De esta manera, le quita tareas de encima a este último, y así se puede dedicar casi exclusivamente al proceso de datos.
El coprocesador gráfico
Posteriormente, para lograr una mayor velocidad se comenzaron a instalar en las placas de video otros circuitos especializados en el proceso de comandos gráficos, llamados coprocesadores gráficos. Se encuentran especializados en la ejecución de una serie de instrucciones específicas de generación de gráficos. En muchas ocasiones el coprocesador se encarga de la gestión del mouse y de las operaciones tales como la realización de ampliaciones de pantalla.
Aceleradores gráficos 3D
Los gráficos en tres dimensiones son una representación gráfica de una escena o un objeto a lo largo de tres ejes de referencia, X, Y, Z, que marcan el ancho, el alto y la profundidad de ese gráfico. Para manejar un gráfico tridimensional, éste se divide en una serie de puntos o vértices, en forma de coordenadas, que se almacenan en la memoria RAM. Para que ese objeto pueda ser dibujado en un monitor de tan sólo dos dimensiones (ancho y alto), debe pasar por un proceso que se llama renderización.
La renderización se encarga de modelar los pixeles (puntos), dependiendo de su posición en el espacio y su tamaño. También rellena el objeto, que previamente ha sido almacenado como un conjunto de vértices. Para llevar a cabo ésta tarea, se agrupan los vértices de tres en tres, hasta transformar el objeto en un conjunto de triángulos. Estos procesos son llevados a cabo entre el microprocesador y el acelerador gráfico. Normalmente, el microprocesador se encarga del procesamiento geométrico, mientras que el acelerador gráfico del rendering.
En pocas palabras, el microprocesador genera el objeto, y el acelerador gráfico lo "pinta". El gran problema que enfrenta el microprocesador es que al construir los objetos 3D a base de polígonos, cuanto más curvados e irregulares se tornan los bordes del objeto, mayor es la cantidad de polígonos que se necesitan para aproximarse a su contextura. El problema es aún peor si además dicho objeto debe moverse, con lo cuál hay que generarlo varias decenas de veces en un lapso de pocos segundos.
9. Tarjetas de sonido
La tarjeta de sonido convierte los sonidos digitales en corriente eléctrica que es enviada a las bocinas. El sonido se define como la presión del aire que varia a lo largo del tiempo. Para digitalizar el sonido, las ondas son convertidas en una corriente eléctrica medida miles de veces por segundo y registrada con un número. Cuando el sonido se reproduce, la tarjeta de sonido invierte este proceso: traduce la serie de número en corriente eléctrica que se envía a las bocinas. El imán se mueve hacia adelante hacia adelante y hacia a tras creando vibraciones. Con el software correcto usted puede hacer más que solo grabar y reproducir sonidos digitalizados. Las unidades incorporadas en algunos sistemas operativos, proporcionan un estudio de sonido en miniaruta, permitiendo ver la banda sonora y editarla. En la edición puede cortar bits de sonido, copiarlos, amplificar las partes que desea escuchar las fuerte, eliminar la estática y crear muchos efectos acústicos.
DAC (Conversor Digital-Analógico / Analógico-Digital)
El DAC transforma los datos digitales emitidos en datos analógicos para que los parlantes los "interprete". y el ADC se encarga de hacer exactamente lo mismo que el DAC, pero al revés, como por ejemplo, cuando se graba desde una fuente externa (Ej.: Teclado MIDI), se debe transformar esos datos analógicos que llegan por el cable, en datos digitales que se puedan almacenar.
Polifonía
Las placas de sonido toman las muestras de sonido generalmente a 16 bits. Se trata del número de voces, esos bits vienen a definir la posición del altavoz. Para emitir sonidos, los parlantes se mueven dando golpes. Estos golpes hacen que el aire que nos rodea vibre, y nuestros oídos captan esas vibraciones y las transforman en impulsos nerviosos que van a nuestro cerebro. Entonces, se le debe indicar al parlante dónde debe "golpear". Para ello simplemente se le envía una posición, en este caso un número, cuantas más posiciones se pueda representar, mejor será el sonido. Y cuantos más bits, más posiciones podremos representar.
Bits
Posiciones
8 bits
256 posiciones
16 bits
65536 posiciones
Sistemas MIDI
Los dispositivos de sonido incluyen un puerto MIDI, que permite la conexión de cualquier instrumento, que cumpla con esta norma, a la PC, e intercambiar sonido y datos entre ellos. Así, es posible controlar un instrumento desde la PC, enviándole las diferentes notas que debe tocar, y viceversa; para ello se emplean los llamados secuenciadores MIDI.
Un detalle interesante es que en el mismo puerto MIDI se puede conectar un Joystick, algo muy de agradecer por el usuario, puesto que normalmente los equipos no incorporaban de fábrica dicho conector.
Frecuencia de muestreo
Otra de las funciones básicas de una placa de sonido es la digitalización; para que la PC pueda tratar el sonido, debe convertirlo de su estado original (analógico) al formato que la PC "entienda", binario (digital). En este proceso se realiza lo que se denomina muestreo, que es recoger la información y cuantificarla, es decir, medir la altura o amplitud de la onda. El proceso se realiza a una velocidad fija, llamada frecuencia de muestreo; cuanto mayor sea esta, más calidad tendrá el sonido, porque más continua será la adquisición del mismo.
Sintetizando, lo que acá nos interesa saber es que la frecuencia de muestreo es la que marcará la calidad de la grabación, por tanto, es preciso saber que la frecuencia mínima recomendable es de 44.1 KHz, con la que podemos obtener una calidad comparable a la de un disco compacto (CD). Utilizar mas de 44.1 Khz sería inútil, ¿porque? por el mismo motivo por el que el VHS emite 24 imágenes por segundo: si el ojo humano es capaz de reconocer como mucho unas 30 imágenes por segundo, sería una pérdida de medios y dinero emitir más de 50 imágenes por segundo por ejemplo. Por el simple hecho de que no notaríamos la diferencia. De la misma manera, el oído humano es capaz de reconocer unos 44.000 sonidos cada segundo, con lo que la utilización de un mayor muestreo no tendría ningún sentido, en principio.
Todas las placas de sonido hogareñas pueden trabajar con una resolución de 44.1KHz, y muchas incluso lo hacen a 48KHz. Las semiprofesionales trabajan en su mayoría con esos 48KHz, algunas incluso con 50KHz y por último las profesionales llegan cerca de los 100KHz.
Sonido 3D
El sonido 3D consiste en añadir un efecto dimensional a las ondas generadas por la placa, estas técnicas permiten ampliar el campo estéreo, y aportan una mayor profundidad al sonido habitual. Normalmente, estos efectos se consiguen realizando mezclas específicas para los canales derecho e izquierdo, para simular sensaciones de hueco y direccionalidad.
Seguro que les suenan nombres como SRS (Surround Sound), Dolby Prologic o Q-Sound; estas técnicas son capaces de ubicar fuentes de sonido en el espacio, y desplazarlas alrededor del usuario, el efecto conseguido es realmente fantástico, y aporta nuevas e insospechadas posibilidades al software multimedia y, en especial, a los juegos.
10. El módem.
El Módem (abreviatura de Modulador / Demodulador) se trata de un equipo, externo o interno (tarjeta módem), utilizado para la comunicación de computadoras a través de líneas analógicas de transmisión de voz y/o datos. El módem convierte las señales digitales del emisor en otras analógicas, susceptibles de ser enviadas por la línea de teléfono a la que deben estar conectados el emisor y el receptor. Cuando la señal llega a su destino, otro módem se encarga de reconstruir la señal digital primitiva, de cuyo proceso se encarga la computadora receptora. En el caso de que ambos puedan estar transmitiendo datos simultáneamente en ambas direcciones, emitiendo y recibiendo al mismo tiempo, se dice que operan en modo full-duplex; si sólo puede transmitir uno de ellos y el otro simplemente actúa de receptor, el modo de operación se denomina half-duplex. En la actualidad, cualquier módem es capaz de trabajar en modo full-duplex, con diversos estándares y velocidades de emisión y recepción de datos.
Para convertir una señal digital en otra analógica, el módem genera una onda portadora y la modula en función de la señal digital. El tipo de modulación depende de la aplicación y de la velocidad de transmisión del módem. Un módem de alta velocidad, por ejemplo, utiliza una combinación de modulación en amplitud y de modulación en fase, en la que la fase de la portadora se varía para codificar la información digital. El proceso de recepción de la señal analógica y su reconversión en digital se denomina demodulación. La palabra módem es una contracción de las dos funciones básicas: modulación y demodulación. Además, los módems se programan para ser tolerantes a errores; esto es, para poder comprobar la corrección de los datos recibidos mediante técnicas de control de redundancia (véase CRC) y recabar el reenvío de aquellos paquetes de información que han sufrido alteraciones en la transmisión por las líneas telefónicas.
Tipos de Módem
Internos:
Se instalan en la tarjeta madre, en una ranura de expansión (slot) y consisten en una placa compuesta por los diferentes componentes electrónicos que conforman un módem, para ofrecer un alto rendimiento. Hay para distintos tipos de conector:
·         ISA: debido a la baja velocidad que transfiere este tipo de conector, hoy en día no se utiliza.
·         PCI: es el conector más común y estándar en la actualidad.
·         AMR: presente sólo en algunas placas modernas, poco recomendables por su bajo rendimiento. 
Externos:
Estos van fuera del computador, dentro de una caja protectora con luces indicadoras y botones de configuración. Se pueden ubicar sobre el escritorio o la mesa donde se ubica el computador. La conexión se realiza generalmente mediante el puerto serial (COM) o mediante el puerto USB, por lo que se usa el chip UART de la PC. Su principal ventaja es que son fáciles de instalar y no se requieren conocimientos técnicos básicos como en el caso de los internos, proporcionando facilidad para su instalación.
HSP o Winmodem:
Son internos y tienen pocos componentes electrónicos, como ser determinados chips, de manera que el microprocesador del PC debe suplir su función mediante software. Generalmente se conectan igual que los internos, aunque algunos se conectan directamente en la tarjeta madre, una de estas tarjetas son las PC-Chips. Claro está que son de menos desempeño ya que dependen de la CPU. Por muy rápido que sea el procesador son de igual manera lentos, ya que además, estas tarjetas madres que incorporan módems, casi siempre tienen video, sonido y red incorporados, y el trabajo del procesador es mucho mayor.
PCMCIA:
Se utilizan en computadoras portátiles, su tamaño es similar al de una tarjeta de crédito algo más gruesa, y sus capacidades pueden ser igual o más avanzadas que en los modelos normales.
Cable Módem:
Estos son los más modernos y se conectan comúnmente por conectores RF (RG58) que son iguales a los cables de la televisión. Está tecnología permite transferir grandes cantidades de información ya que cuentan con equipo de cabecera conectados a Internet por medio de fibra óptica o satelital y distribuye la conexión mediante nodos hacia nuestra casa. Estos módems son utilizados mayormente por los proveedores de TV, ya que ellos aprovechan el cableado para transmitir datos desde nuestro módem y luego hacia nuestro PC a través de conectores RJ45 o USB.
11. Sistema de sonidos
Parlantes o altavoces
Estos dispositivos de Salida, son los que le dan vida a nuestro computador, ya que a través de ellos podemos identificar los eventos que nuestro computador esta manifestando en el programa en ejecución. El término de Multimedia tomo fuerza gracias a la aparición de las tarjetas de sonido y estos a su vez se vieron en la necesidad de contar con estos dispositivos para poder representar los sonidos.
Actualmente podemos decir que un computador sin sonido no tiene vida, ya que para muchos es muy simple trabajar sin algo de música, verificar alguna enciclopedia que contenga audio y video o reproducir juegos y nada de esto tenga sonido. Antes era vanguardia, pero ahora es lo estándar y es considerado como una necesidad.
Debido l gran crecimiento en la industria de la música digital y electrónica como el MP3, las películas en DVD o videos digitales y los video juegos, algunas empresas han diseñado sistemas de sonido acordes a cada una de estas necesidades.
Tipos de sistemas de sonido
Parlantes sencillos o de escritorio: estos son los que normalmente encontramos en la mayoría de los computadores de casa u oficina, entre otros y muy sencillos. Algunos marcas de computadores incorporan los parlantes en el mismo diseño de las torres o desktop para mayor comodidad y ahorro de espacio.
Parlantes Cuadrafónicos: como su nombre lo indica son cuatro parlantes ubicados dos en la parte frontal y dos en la parte de atrás del usuario para obtener un sonido más amplio y nítido, en donde los sonidos son distribuidos de forma más eficaz hacia el oído.
Parlantes de sonido envolvente: realmente es aquí en donde no sabemos si estamos en dentro del lugar de donde proviene el sonido, como es el caso de las películas y los video juegos, ya que es tan impresionante que casi brincamos cuando se oye el sonido de explosiones entre otros. Lo que hace que este sistema de sonido sea tan impresionante y real, se debe gracias a una caja llamada normalmente Woofer o Bajo. Estos son un altavoz que emite bajas frecuencias y que en conjunto con los otros cuatro parlantes más uno que se encuentra en todo el frente, se logra este envolvimiento.
12. El teclado
El teclado es un componente al que se le da poca importancia, fundamentalmente en las computadoras clónicas (armadas). Aun así es un componente muy importante, ya que es el que permitirá nuestra relación con el PC, es más, junto con el mouse son los responsables de que podamos comunicarnos en forma fluida e inmediata con nuestra PC.
Existen varios tipos de teclados:
·         De membrana: son los más baratos, son algo imprecisos, de tacto blando, casi no hacen ruido al teclear.
·         Mecánicos: los más aceptables en calidad/precio, Más precisos, algo mas ruidosos que los anteriores.
·         Ergonómicos: generalmente están divididos en dos partes con diferente orientación, pero sólo es recomendable si va a usarlo mucho o si nunca ha usado una PC antes, ya que acostumbrarse a ellos es una tarea casi imposible.
·         Otros: podemos encontrar teclados para todos los gustos, desde teclados al que se les han añadido una serie de teclas o "ruedas" que facilitan el acceso a varias funciones, entre ellas, el volumen, el acceso a Internet, apagado de la PC, etc, etc. hasta los inalámbricos, etc.
Modelo del Teclado estandar de IBM
Para ver el gráfico seleccione la opción "Descargar" del menú superior
En cuanto al conector al que utilizan podemos encontrar una gran variedad, generalmente se utilizan los estándares DIN , y el mini-DIN . El primero es el clásico, aunque actualmente ya prácticamente se esta erradicando y reemplazando por el PS/2 (mini-din, habituales en placas ATX), sin embargo todavía se los puede ver en computadoras tipo AT armadas.
También existen conectores USB al igual que en el mouse, pero todavía con poco uso debido a su alto precio en los dos casos (teclado y mouse) y porque no todas las PC´s cuentan con este tipo de conector (aunque en la actualidad cada vez mas, y de a poco se va introduciendo este conector), de todas maneras no es una característica preocupante ya que no altera el rendimiento para nada.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
13. El ratón o Mouse
El ratón o mouse es un dispositivo que ayuda al usuario a navegar dentro de la interfaz gráfica del computador. Conectado a ésta por un cable, por lo general está acoplado de tal forma que se puede controlar el cursor en la pantalla, moviendo el ratón sobre una superficie plana en donde los ejes puedan rotar tanto a la derecha como a la izquierda.
Las diferentes tecnologías de ratones son:
Mecánico
Estos son dispositivos algo antiguos y funcionaban mediante contactos físicos eléctricos a modo de escobillas que en poco tiempo comenzaban a fallar y además de pesados, no eran precisos.
Opto-mecánico
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Este tipo de dispositivo es el más común. Al mover el ratón, se hace rodar una bola que hay en su interior. Esta rotación hace girar dos ejes, correspondientes a las dos dimensiones del movimiento. Cada eje mueve un disco con ranuras. De un lado de cada disco, un diodo emisor de luz (LED, acrónimo de Light-Emitting Diode) envía luz a través de las ranuras hacia un fototransistor de recepción situado al otro lado. A continuación, la secuencia de cambios de luz a oscuridad se traduce en una señal eléctrica, que indica la posición y la velocidad del ratón, que se ven reflejadas en el movimiento del cursor en la pantalla del computador.
Ratón optomecánico o Mouse optomecánico, en informática, tipo de mouse (ratón) en el que el movimiento se traduce en señales de dirección a través de una combinación de medios ópticos y mecánicos. La porción óptica incluye pares de diodos emisores de luz (LEDs, acrónimo de Light-Emitting Diodes) y sensores de búsqueda. La parte mecánica consiste en unas ruedas rotatorias dotadas de muescas, similares a las de los más tradicionales dispositivos mecánicos. Al mover el mouse, las ruedas giran y la luz de los LEDs pasa a través de las muescas activando un sensor de luz o queda bloqueada por los componentes sólidos de las ruedas. Los pares de sensores detectan estos cambios de luz y los interpretan como indicaciones de movimiento. Dado que los sensores están ligeramente desfasados entre sí, la dirección del movimiento se determina averiguando qué sensor ha sido el primero en volver a obtener el contacto luminoso. Al utilizar componentes ópticos en lugar de mecánicos, el mouse optomecánico elimina la necesidad de las numerosas reparaciones originadas por el desgaste y el mantenimiento propios de los mouse puramente mecánicos.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
TrackBalls
Estos son permiten mover el cursos usando los dedos que a la vez accionan una bola situada en la parte superior del dispositivo. El TrackBall no necesita una superficie plana para operar, ya que se trata de un elemento interesante en entornos reducidos y para computadores portatiles, claro está que también se usan mucho en trabajos de diseño, ya que permiten ser precisos.
 Óptico
Estos son más avanzados y no tiene rueditas ni objetos extraños por debajo, solo tienen un dispositivo sensible a la luz que detecta la posición actual con respecto a la ubicación en la pantalla.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
14. El monitor
El monitor es un dispositivo periférico de salida y muy importante en la computadora, es la pantalla en la que se ve la información. Podemos encontrar básicamente dos tipos de monitores: uno es el CRT basado en un tubo de rayos catódicos como el de los televisores y el otro es el LCD, que es una pantalla plana de cristal líquido como la de las calculadoras, teléfonos celulares o agendas electrónicas. Los monitores son muy similares en cuanto a su forma física y posición de botones de control.
Los botones de opciones más comunes de un monitor son:
Para ver los gráficos seleccione la opción "Descargar" del menú superior
Tipos de Monitores
CRT
El CRT (Cathode Ray Tube – Tubo de Rayos Catódicos) es el tubo de imagen usado para crear imágenes en la mayoría de los monitores de sobremesa. En un CRT, un cañón de electrones dispara rayos de electrones a los puntos de fósforo coloreado en el interior de la superficie de la pantalla del monitor. Cuando los puntos de fósforo brillan, se produce una imagen.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
LCD
El LCD (Liquid Crystal Display – Pantalla Cristal Líquido) es una pantalla de alta tecnología, la tela de cristal liquido permite mayor calidad de imagen y un área visible mas amplia, o sea, para la transmisión de imagen, es usado un cristal liquido entre dos laminas de video y atribuyen a cada pixel un pequeño transistor, haciendo posible controlar cada uno de los puntos.
Son rápidas, presentan alto contraste y área visible mayor de lo que la imagen del monitor CTR convencional, además de consumir menos energía. Una de las características y diferencias principales con respecto a los monitores CTR es que no emiten en absoluto radiaciones electromagnéticas dañinas, por lo que la fatiga visual y los posibles problemas oculares se reducen.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Punto de Campos (Dot pitch)
Es la distancia diagonal en milímetros entre los puntos de fósforo del mismo color que recubren el interior de la pantalla del CRT. Un monitor con un punto de campo más pequeño produce una imagen más nítida. Generalmente el dot pitch de un monitor estándar es de 0,28 mm, pero en monitores profesionales puede llegar a 0,25, 0,24 o 0,21 mm.
La resolución
Se trata del número de puntos que puede representar el monitor por pantalla. Así, un monitor cuya resolución máxima sea de 1024x768 puntos puede representar hasta 768 líneas horizontales de 1024 puntos cada una, además de otras resoluciones inferiores, como 640x480 u 800x600.
Cuanto mayor sea la resolución de un monitor, mejor será la calidad de la imagen en pantalla, y mayor será la calidad del monitor. La resolución debe ser proporcional al tamaño del monitor, es normal que un monitor de 14" ó 15" no ofrezca 1280x1024 puntos, mientras que es el mínimo exigible a uno de 17" o superior. La siguiente tabla ilustra este tema:
Tamaño del monitor
Resolución máxima
Resolución recomendada
14"
1024x768
640x480
15"
1024x768
800x600
17"
1280x1024
1024x768
19"
1600x1200
1152x864
21"
1600x1200
1280x1024
15. La impresora
La impresora es un dispositivo periférico de salida que nos permite realizar impresiones en papel, para así tener respaldo de archivos y presentaciones. La impresión es muy importante cuando necesitamos realizar una carta, un proyecto o cualquier tipo de información, que a pesar de estar bien presentada digitalmente, en algún momento necesitaremos plasmar el resultado final en papel.
Las impresoras manejan un lenguaje llamado PLP, que permite a la computadora enviar información a la impresora acerca del contenido del trabajo. Hay dos tipos principales: Adobe PostScript y Hewlett-Packard Printer Control Lenguaje (PCL).
Además trabajan bajo puertos que permiten la comunicación entre la Impresora y el PC. EL puerto ECP está Incluido en el estándar 1284 del Instituto de Ingeniería Eléctrica y Electrónica, el ECP es un sistema que soporta comunicaciones bidireccionales entre la PC y la impresora, o el escáner. Tiene una tasa de transferencia mucho mayor que el estándar Centronics. Los demás periféricos pueden utilizar el puerto EPP (Enhaced Parallel Port – Puerto paralelo mejorado), en lugar del ECP.
Tipos de Impresoras
Impresoras de Matriz de Punto
Estas son de las más antiguas y son imprescindibles cuando se trata de imprimir sobre papel copia, o sea aquellas que tiene más de una hoja. Las oficinas comúnmente utilizan estas impresoras, ya que sirven para realizar impresiones en diferentes tipos de papel, pueden realizarse impresiones con papel separado o continuo. Es muy económica en cuanto al consumo de tinta, ya que trabajan con una cinta que se ajunta por detrás del cabezal impresor.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Estas impresoras tienen una gran desventaja cuando se trata de realizar impresiones con múltiples colores, ya que solo permite utilizar un color Blanco (Papel) y Negro (Tinta), sin embargo algunas permiten insertar cintas de un solo color. Además no son para nada silenciosas.
El funcionamiento es sencillo, tiene un cabezal con una serie de agujas muy pequeñas que reciben los impulsos que hacen golpear dichas agujas sobre el papel y esta se desliza por un rodillo sólido. Los modelos más comunes son las de 9 y 24 agujas, haciendo referencia al número que de este componente se dota al cabezal, este parámetro también se utiliza para medir su calidad de impresión, lógicamente a mayor número de agujas, más nítida será la impresión.
En cuanto a su mantenimiento, se puede decir que son equipos muy resistentes y muy pocas veces presentan problemas de funcionamiento. Algunas veces se corre el rodillo o se sale la correa, pero no es nada complicado de acomodar manualmente.
Impresoras de Inyección de Tinta
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Esta tiene en un cabezal tipo inyector, compuesto por una serie de boquillas que expulsan la tinta dependiendo de las instrucciones recibidas por el sistema. Hoy en día la necesidad de realizar impresiones a color más que un lujo es una necesidad y es muy común encontrar computadores en compañía de una impresora de inyección a tinta que es la más exitosa en el mercado debido a su costo, a pesar de que los cartuchos de tinta no son nada económicos.
Aquí el parámetro de calidad lo da la resolución de la imagen impresa, expresada en puntos por pulgada ( ppp ) o también lo podrán ver como dpi ( dot per inch ). Con 300 ppp basta para imprimir texto, para fotografías es recomendable al menos 600 ppp. Dada su relación calidad/precio, son las impresoras más utilizadas para trabajos hogareños y semi-profesionales.
Algunas de estas impresoras tienen cartuchos con una serie de cabezales y otros que solo tiene boquilla para expulsar la tinta, en este caso, las cabezas pegadas en la base donde se coloca el cartucho es quien inyecta la tinta.
Impresoras Láser
Estas impresoras son algo costosas en comparación con las demás y su mantenimiento en cuanto al cambio de tinta (Toner) y revisión técnica es costoso. Una ventaja es que estas impresoras imprimen al rededor de 1.500 paginas con muy buena calidad.
Su funcionamiento consiste de un láser que va dibujando la imagen electrostáticamente en un elemento llamado tambor que va girando hasta impregnarse de un polvo muy fino llamado tóner (como el de fotocopiadoras) que se le adhiere debido a la carga eléctrica. Por último, el tambor sigue girando y se encuentra con la hoja, en la cual imprime el tóner que formará la imagen definitiva.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ARQUITECTURA DE LAS COMPUTADORAS
 
La Unidad Central del Sistema es un habitáculo en forma de caja donde se sitúa el «cerebro» de la computadora, esto es, la unidad central de proceso (CPU), así como los distintos componentes que van a ayudar al sistema informático en sus operaciones habituales (bus, memorias, fuentes de alimentación eléctrica, etcétera).
La unidad central de proceso se compone de:
• Una Unidad de Control que manejará los diferentes componentes del sistema informático así como los datos a utilizar en los diferentes procesos.
• Una Unidad Aritmético-Lógica que realizará las diferentes operaciones de cálculo en las que la computadora basa su funcionamiento.
• Unos Registros del Sistema que sirven como área de trabajo interna a la unidad central de proceso.
La unidad central de proceso se conecta a una serie de memorias que le sirven como soporte para el manejo de los datos y programas que se han de utilizar mientras se encuentre operativa.
Las diferentes memorias del sistema informático (Random Access Memory o RAM y Read Only Memory o ROM) son componentes fundamentales de la computadora ya que van a ser, en el caso de la RAM, el área de trabajo donde el microprocesador va a realizar las diferentes operaciones en que se van a descomponer los procesos solicitados por el usuario, mientras que la ROM va a servir para ayudar a la computadora a realizar las diferentes operaciones de arranque del sistema informático previas a que el sistema operativo tome el control de las diferentes tareas a realizar.
La unidad central de proceso y las memorias se conectan entre ellas por medio del bus. El bus es un enlace de comunicaciones que conecta todos los componentes que configuran el sistema informático y permite la transferencia de información entre ellos. Esta información se compone de datos y órdenes de comandos para manipular los datos. Existen varias tecnologías de diseño y construcción de buses entre las que se pueden distinguir las arquitecturas ISA, EISA y MCA que se verán más adelante.
Otros componentes que se conectan al bus son los puertos de conexión de los diferentes periféricos asociados a la unidad central del sistema de la computadora y que van a permitir configurar el sistema informático para una serie diferente de operaciones funcionales que siempre han de cubrir las necesidades del usuario.
Es evidente que la configuración de un sistema informático ha de realizarse en función de los objetivos operativos que vaya a cubrir la citada computadora. Así, un sistema informático que se va a dedicar exclusivamente a CAD/CAM (diseño asistido por computadora) no tendrá una configuración similar a la de una computadora que va a dedicarse a controlar los diferentes enlaces de comunicaciones que componen una redinformática.
Los diferentes periféricos que se pueden conectar a un sistema informático se dividen en cuatro grupos principales:
• Periféricos de Entrada de Información.
• Periféricos de Almacenamiento de Información.
• Periféricos de Salida de Información.
• Periféricos de Comunicaciones.
Unidad Central del Sistema
La Unidad Central del Sistema (System Unit en inglés) es el centro de operaciones de cualquier computadora existente en el mercado actual. En la unidad central del sistema se alojan los componentes y circuitería que van a realizar las tareas fundamentales de la computadora.
Al abrir la unidad central del sistema de una computadora se pueden apreciar una serie de componentes:
- Placa principal.
- Microprocesador central o unidad central de proceso (CPU).
- Bus.
- Memoria principal.
- Otros componentes controladores.
- Fuente de alimentación eléctrica.
A continuación se estudiará detenidamente cada uno de ellos.
1. Placa Principal.
Es una placa con un circuito impreso donde se conectan los elementos básicos de la computadora: el microprocesador, el bus y toda o parte de la memoria principal.
En algunos lugares también aparece denominada como placa base o placa madre.
2. Microprocesador Central o Unidad Central de Proceso (CPU).
Es el elemento fundamental de la computadora. El microprocesador va a ocuparse de la ejecución de las órdenes de comandos, los cálculos matemáticos solicitados por las referidas órdenes, el manejo de los datos asociados a los cálculos. Otra función importante del microprocesador va a ser el control de los componentes del sistema informático conectados a él y que le dan apoyo y le permiten realizar todas las operaciones que le son solicitadas por los diferentes programas de aplicación.
El microprocesador se va a ocupar también de controlar y gestionar el tráfico de datos entre la unidad central del sistema y los periféricos optimizando los procesos a realizar por la computadora.
3. Bus.
El bus, quizá fuera mejor decir los buses ya que existen varios con diversas funciones, es un circuito que conecta el procesador central con todo el resto de componentes de la computadora.
El bus sirve para que le llegue al procesador la información y las solicitudes de trabajo, desde el exterior, y envíe hacia afuera los resultados del trabajo realizado.
4. Memoria Principal.
Es la zona de trabajo donde la computadora va a almacenar temporalmente las órdenes a ejecutar y los datos que deberán manipular esas órdenes.
Cuanto mayor sea la cantidad de memoria existente en el sistema informático, mayores serán las posibilidades de trabajo de la computadora, ya que ésta podrá manipular una cantidad superior de datos al mismo tiempo (siempre que el sistema operativo lo permita).
5. Componentes de Control.
Son elementos que sirven como apoyo al funcionamiento del microprocesador central.
Fundamentalmente, son componentes especializados en realizar determinadas operaciones, descargando al microprocesador central de estas actividades y permitiéndole obtener una mayor rapidez y efectividad en el manejo del conjunto del sistema informático.
Los controladores más importantes son el controlador de interrupciones, el generador de reloj y el controlador de acceso directo a memoria.
Las placas de expansión interna más importantes son las de control del subsistema de vídeo, que manejarán las señales que envía la CPU a la pantalla del sistema informático y las del controlador de los discos de la computadora que controlará el flujo de datos entre la memoria principal y el subsistema de almacenamiento.
Estos componentes serán estudiados en el apartado concreto de sus tareas dentro del sistema informático.
6. Fuente de Alimentación Eléctrica.
Las fuentes de alimentación proporcionan la energía eléctrica que necesita por la computadora para funcionar. Esa energía se estabiliza para impedir que la computadora se vea afectada por oscilaciones bruscas en el suministro de las compañías eléctricas.
La fuente de alimentación transforma la corriente alterna de 220 voltios de la red ciudadana en corriente continua y de menor voltaje, que es la que necesitan los diferentes componentes de la computadora.
Los voltajes que proporciona la fuente de alimentación son de 12 y 5 voltios. El primero se utiliza para poner en funcionamiento los componentes mecánicos de la computadora (discos, diskettes, etc.). El segundo se utiliza en los componentes electrónicos (el microprocesador, la memoria, el reloj, etc.).
En caso de que se abra la unidad central del sistema de la computadora es muy importante no manipular la fuente de alimentación; hay que tener en cuenta que, si el sistema informático está enchufado y encendido, la fuente de alimentación es potencialmente peligrosa. Si se está intentando realizar alguna operación dentro de la caja de la unidad, deben manipularse cuidadosamente los cables que entran y salen de la caja de la fuente de alimentación y bajo ningún concepto intentar abrirla.
Unidad Central de Proceso
La Unidad Central de Proceso es el lugar donde se realizan las operaciones de cálculo y control de los componentes que forman la totalidad del conjunto del sistema informático.
Las CPU de las actuales computadoras son microprocesadores construidos sobre un cristal de silicio semiconductor donde se crean todos los elementos que forman un circuito electrónico (transistores, etc.) y las conexiones necesarias para formarlo.
El microcircuito se encapsula en una pastilla de plástico con una serie de conexiones hacia el exterior, en forma de patillas metálicas, que forman su nexo de unión al resto del sistema informático. Estas pastillas de plástico, con una multitud de patillas de conexión metálicas, reciben el nombre de chips.
El microprocesador central de una computadora se divide en:
• Unidad de Control (Control Unit o CU en inglés).
• Unidad Aritmético-Lógica (Aritmethic Control Unit o ALU en inglés).
La Unidad de Control maneja y coordina todas las operaciones del sistema informático, dando prioridades y solicitando los servicios de los diferentes componentes para dar soporte a la unidad aritmético-lógica en sus operaciones elementales.
La Unidad Aritmético-Lógica realiza los diferentes cálculos matemáticos y lógicos que van a ser necesarios para la operatividad de la computadora; debe recordarse que todo el funcionamiento del sistema de una computadora se realiza sobre la base de una serie de operaciones matemáticas en código binario.
Los Registros son una pequeña memoria interna existente en la CPU que permiten a la ALU el manejo de las instrucciones y los datos precisos para realizar las diferentes operaciones elementales.
De la misma forma que la placa principal tiene un bus para conectar la CPU con los diferentes dispositivos del sistema informático, la unidad de control tiene un bus interno para conectar sus componentesName=g12; HotwordStyle=BookDefault; .
Unidad de Control (CU)
Es la parte de la unidad central de proceso que actúa como coordinadora de todas las tareas que ha de realizar la computadora. Asimismo, se encarga de manejar todas las órdenes que la computadora necesita para realizar la ejecución de las operaciones requeridas por los programas de aplicación.
Sus funciones Básicas son:
1. Manejar todas las operaciones de acceso, lectura y escritura a cada una de las posiciones de la memoria principal donde se almacenan las instrucciones necesarias para realizar un proceso.
2. Interpretar la instrucción en proceso.
3. Realizar las tareas que se indican en la instrucción.
Esta unidad también se ocupa de controlar y coordinar a las unidades implicadas en las operaciones anteriormente mencionadas, de manera que se eviten problemas internos que se puedan producir entre los componentes de la computadora.
La unidad de control, finalmente, comunica entre sí y dirige las entradas y salidas desde y hasta los periféricos, dando el oportuno tratamiento a la información en proceso.
Para realizar su cometido, la unidad de control necesita manejar la siguiente información:
• El registro de estado.
• El registro puntero de instrucciones.
• La instrucción a ejecutar.
• Las señales de entrada/salida.
La salida que proporcionará la unidad de control será el conjunto de órdenes elementales que servirán para ejecutar la orden solicitada.
Los pasos en que se divide este proceso son:
1. Extraer de la memoria principal la instrucción a ejecutar.
2. Tras reconocer la instrucción, la unidad de control establece la configuración de las puertas lógicas (las interconexiones de los diferentes componentes del circuito lógico) que se van a ver involucradas en la operación de cálculo solicitada por la instrucción, estableciendo el circuito que va a resolverla.
3. Busca y extrae de la memoria principal los datos necesarios para ejecutar la instrucción indicada en el paso número 1.
4. Ordena a la unidad involucrada en la resolución de la instrucción en proceso que realice las oportunas operaciones elementales.
5. Si la operación elemental realizada ha proporcionado nuevos datos, éstos se almacenan en la memoria principal.
6. Se incrementa el contenido del registro puntero de instrucciones.
Unidad Aritmética y Lógica (ALU)
Su misión es realizar las operaciones con los datos que recibe, siguiendo las indicaciones dadas por la unidad de control.
El nombre de unidad aritmética y lógica se debe a que puede realizar operaciones tanto aritméticas como lógicas con los datos transferidos por la unidad de control.
La unidad de control maneja las instrucciones y la aritmética y lógica procesa los datos.
Para que la unidad de control sepa si la información que recibe es una instrucción o dato, es obligatorio que la primera palabra que reciba sea una instrucción, indicando la naturaleza del resto de la información a tratar.
Para que la unidad aritmética y lógica sea capaz de realizar una operación aritmética, se le deben proporcionar, de alguna manera, los siguientes datos:
1. El código que indique la operación a efectuar.
2. La dirección de la celda donde está almacenado el primer sumando.
3. La dirección del segundo sumando implicado en la operación.
4. La dirección de la celda de memoria donde se almacenará el resultado.
Registros
Los Registros son un medio de ayuda a las operaciones realizadas por la unidad de control y la unidad aritmética y lógica. Permiten almacenar información, temporalmente, para facilitar la manipulación de los datos por parte de la CPU.
Realizando una similitud con el resto del sistema informático, los registros son a la CPU como la memoria principal es a la computadora.
Los registros se dividen en tres grupos principales:
• Registros de Propósito General.
• Registros de Segmento de Memoria.
• Registros de Instrucciones.
Seguidamente se presenta una relación completa de los tres grupos de registros que contiene un microprocesador típico como puede ser el Intel 80386:
Registros de Propósito General:
(AX) Registro de Datos
(DX) Registro de Datos
(CX) Registro de Datos
(BX) Registro de Datos
(BP) Registro Puntero Base
(SI) Registro Índice Fuente
(DI) Registro Índice Destino
(SP) Registro Puntero de la Pila
Registros de Segmento de Memoria:
(CS) Registro Segmento de Código
(SS) Registro Segmento de la Pila
(DS) Registro Segmento de Datos
(ES) Registro Segmento de Datos Extra
(DS) Registro Segmento de Datos Extra
(ES) Registro Segmento de Datos Extra
Registros de Instrucciones
(FL) Registro de «Flags» o también denominado registro de estado
(IP) Registro Puntero de Instrucción o también denominado registro Contador de Programa (PC)
De esta relación de registros los cuatro más importantes son:
• El Registro Puntero de Instrucciones.
El registro puntero de instrucciones o contador de programa indica el flujo de las instrucciones del proceso en realización, apuntando a la dirección de memoria en que se encuentra la instrucción a ejecutar.
Dado que las instrucciones de un programa se ejecutan de forma secuencial, el procesador incrementará en una unidad este registro cada vez que ejecute una instrucción, para que apunte a la siguiente.
La información que almacena este registro se puede modificar cuando una interrupción externa, o la propia ejecución del proceso en curso, provoque una alteración en la secuencia de operaciones. Esta alteración transferirá el control del sistema informático a otro proceso diferente al que está en ejecución.
• El Registro Acumulador.
Es el Registro donde se almacenan los resultados obtenidos en las operaciones realizadas por la unidad aritmética y lógica.
Su importancia radica en las características de la información que almacena, ya que con su contenido se realizan todas las operaciones de cálculo que ha de ejecutar la unidad aritmética y lógica.
• El registro de Estado.
El Registro de Estado o registro de «flags» no es un solo registro propiamente dicho, ya que se compone de varios registros de menor tamaño; este tamaño puede ser incluso de un solo bit.
El registro de estado se utiliza para indicar cambios de estados y condiciones en los otros registros existentes en el sistema informático. Estos cambios en la situación de los demás registros se producen debido a las modificaciones del entorno a lo largo de la ejecución de los procesos realizados por el sistema informático.
• El Registro Puntero de la Pila.
Este Registro almacena la dirección de la zona de la memoria donde está situada la parte superior de la pila.
La Pila es una zona de los registros de segmento de memoria que la unidad aritmética y lógica utiliza para almacenar temporalmente los datos que está manipulando. Cuando la cantidad de datos a manejar es demasiado grande u otras necesidades del proceso impiden que estos datos puedan almacenarse en los registros creados para ello se envían a la pila, donde se almacenan hasta que la unidad de control recupera la información para que la procese la unidad aritmética y lógica.
La ventaja de manejar una pila como almacén de información es que la información que se guarda en ella tiene que entrar y salir, obligatoriamente, por una sola dirección de memoria. Esto permite que la unidad de control no necesite conocer más que esa dirección para poder manejar los datos almacenados en la pila.
Memoria Principal
La Memoria Principal es la zona de la unidad central de sistema que almacena la información, en forma de programas y datos, que se va a procesar seguidamente o va a servir de apoyo a las diferentes operaciones que se van a efectuar por la computadora.
La posibilidad del proceso inmediato de la información que almacena la memoria principal es su característica fundamental, ya que, mientras que los datos existentes en la memoria principal pueden ser procesados de inmediato por la unidad central de proceso, la información contenida en la memoria auxiliar (discos, cintas, etc.) no puede ser procesada directamente por la unidad central de proceso.
La memoria principal está conectada directamente a los buses, que son su medio de comunicación con la unidad central de proceso del sistema informático. La cantidad de memoria existente en una computadora se verá limitada por la capacidad de direccionamiento del bus; esto forma el Mapa de Memoria.
La memoria principal está compuesta lógicamente por una serie de celdas de bits que permiten almacenar en cada una de ellas un bit de información en código binario (0, 1) que será parte de un dato o una instrucción.
Para poder identificar cada una de las celdas de la memoria, éstas se numeran; a este número se le llama dirección y es el medio a través del cual la unidad de control puede manejar la información.
Las direcciones de la memoria se localizan a través del mapa de memoria. La dirección de cada celda de la memoria se establece por una matriz en la que los parámetros son el número total de direcciones y la longitud de palabra que maneja el sistema informático. Esto supone una limitación, ya que la computadora sólo puede manejar un número limitado de bits de dirección en sus operaciones de direccionamiento.
La Palabra representa la cantidad de bits de información manejada en paralelo por la computadora. Tamaños típicos de palabras son 8 bits, 16 bits, 32 bits, etc.
Una vez localizada la dirección de la celda de memoria se podrán realizar dos operaciones: leer la información existente en ella o bien escribir nueva información para poder ser almacenada y posteriormente procesada.
Para poder determinar si el sistema informático va a leer o escribir se utiliza el registro de datos. El registro de datos es un bit que, según el valor de la información que contenga (0,1) indica a la unidad de control si se va a leer o escribir en el acceso a la memoria que se esté realizando en ese momento. En ambos casos, esta operación se realiza a través del bus de datos.
Cuando la unidad de control lee de la celda de memoria, necesita que se le proporcione una dirección a la cual ir a leer. La información existente en la celda no se destruye.
Cuando la unidad de control escribe en la celda de memoria, debe recibir dos informaciones: la dirección de la memoria donde escribir y la información que se debe escribir propiamente dicha. La información existente en la celda de memoria previamente se destruye, ya que lo que había escrito se sustituye por una nueva información.
La memoria principal se divide fundamentalmente en dos partes: Volátil y No Volátil.
La Memoria Volátil pierde la información almacenada en su interior si el sistema informático que la soporta es apagado. Esta parte de la memoria principal se conoce como RAM (Memoria de Acceso Aleatorio o Random Access Memory).
La parte de la Memoria principal que No es Volátil es la ROM (Memoria de Sólo Lectura o Read Only Memory). Esta memoria es de sólo lectura y la computadora no puede escribir sobre ella. Su función principal es el arranque del sistema informático.
Las Memorias Volátiles pueden ser estáticas, también llamadas RAM (Memorias de Acceso Aleatorio o Random Access Memory), o dinámicas, denominadas en este caso DRAM (Memorias Dinámicas de Acceso Aleatorio o Dinamic Random Access Memory). Más adelante se verán más detenidamente.
Las Memorias No Volátiles se dividen en memorias de Sólo Lectura (ROM) y en otras que permiten la Manipulación de la Información que contienen por diversos medios especiales que se verán más adelante.
Existen dos modos distintos de Acceso a la Memoria:
• Acceso por Palabras.
• Acceso por Bloques.
1. Acceso por Palabras.
También se le denomina acceso aleatorio. La operación de acceso se realiza sobre una sola palabra de información. Recuérdese que palabra es la cantidad de bits que maneja el sistema informático al mismo tiempo.
Este tipo de acceso únicamente se utiliza con memorias estáticas (RAM) ya que el tiempo de acceso empleado es siempre el mismo.
2. Acceso por Bloques.
Es el modo de acceso utilizado en las memorias dinámicas. Consiste en empaquetar en un bloque un conjunto de datos al que se añade una cabecera para identificarlo. El acceso se realizará a la cabecera del bloque y una vez en ella se accederá a la información que contiene.
El acceso en las memorias dinámicas se realiza por bloques, debido a que tardan más tiempo que las estáticas en acceder a una zona de la memoria. La ventaja es que una vez que acceden a la zona donde se sitúa el bloque son muy rápidas en acceder a la información existente.
Generalmente, la memoria que posee una computadora recién adquirida no es la máxima que el bus puede direccionar, por lo que la memoria principal puede ampliarse incrementando el número de unidades de memoria conectadas. Conviene recordar que las placas de memoria son un factor fundamental en el costo total de adquisición del sistema informático.
Debe tenerse en cuenta que si la cantidad de memoria principal del sistema informático no es muy grande el procesador se verá restringido en su potencia por la limitada capacidad de manipulación y acceso a los datos.
Las Tecnologías para fabricar memorias se caracterizan por:
• Coste.
• Tiempo de acceso.
• Capacidad de almacenamiento.
La Optimización se consigue con una gran capacidad de almacenamiento, un tiempo de acceso muy corto y un costo pequeño.
Las memorias se dividen físicamente en:
1. Soporte de Almacenamiento de la Información.
Generalmente son de naturaleza magnética. Está compuesto por pequeños dipolos que pueden tomar dos estados en los que la información toma un valor en cada uno de ellos. Cada estado se obtiene por medio de la aplicación de una señal eléctrica exterior generada por el elemento de lectura y escritura.
2. Elemento de Escritura y Lectura.
Este dispositivo introducirá y obtendrá la información de la memoria.
Para Escribir el dispositivo produce una corriente eléctrica local que provoca un cambio estable en el campo magnético de la celda de memoria.
Para Leer el dispositivo determinará el campo magnético de la celda de memoria y sabrá cual es el valor existente.
3. Mecanismo de Direccionamiento.
Pueden ser de dos tipos dependiendo de que las memorias sean estáticas o dinámicas.
En las Memorias Estáticas el direccionamiento es un cableado directo a la celda de memoria.
En las Memorias Dinámicas se utiliza una información de control almacenada con los datos que configuran el circuito para direccionar la lectura o escritura al lugar donde se almacena la información.
La memoria se divide en varias capas o niveles con una estructura cuya forma puede recordarnos a una estructura piramidal.
Nombre
Tamaño Máximo
Tiempo de Acceso
Registros
Hasta 200 Bytes
Menos de 10 Nanosegundos
Memoria Caché
Hasta 512 Bbytes
Entre 10 y 30 Nanosegundos
Memoria Principal
Más de 1 Gigabyte
Entre 30 y 100 Nanosegundos
El vértice de la pirámide sería una pequeña cantidad de memoria, los registros, que se caracterizan por una capacidad de almacenamiento de información muy pequeña, pero que poseen la ventaja de tener un tiempo de acceso muy reducido, inferior a los 10 nanosegundos.
La base de nuestra hipotética pirámide es la memoria principal, donde existe una mayor cantidad de espacio (puede llegar hasta 1 gigabyte, esto es, mil millones de bytes), pero que tiene la desventaja de que el tiempo de acceso es muy superior, lo que la convierte en mucho más lenta que los registros.
Entre ambas se situaría una zona de memoria que se llama memoria caché. La memoria caché es una zona especial de memoria que sirve para optimizar los tiempos de acceso a la memoria RAM por métodos estadísticos.
Memoria de Acceso Aleatorio (RAM)
Las Memorias de Acceso Aleatorio (RAM: Random Access Memory) son memorias construidas sobre semiconductores donde la información se almacena en celdas de memoria que pueden adquirir uno cualquiera de los dos valores del código binario.
Las memorias de acceso aleatorio son memorias en la que se puede leer y escribir información. Permite el acceso a cualquier información que contenga con la misma velocidad. Esto significa que se puede acceder aleatoriamente a cualquier información almacenada sin que se afecte la eficiencia del acceso. Contrasta con las memorias secuenciales, por ejemplo una cinta magnética, donde la facilidad de acceso a una información depende del lugar de la cinta donde esté almacenada.
Las tecnologías de memorias RAM se basan en Celdas de Memoria. La memoria RAM es volátil, esto es, cuando se corta la alimentación eléctrica se pierde toda la información que estuviera almacenada en este tipo de memoria. La comunicación de la RAM con la CPU se realiza a través del Bus de Direcciones y el Bus de Datos.
La memoria RAM se utiliza tanto para almacenar temporalmente programas y datos como para guardar los resultados intermedios que se están manipulando durante un proceso.
Una celda de memoria concreta de la RAM se puede referenciar con una dirección de Segmento de Memoria y un valor determinado dentro de ese segmento llamado «desplazamiento».
La RAM está dividida en segmentos de memoria para facilitar su manejo por la unidad de control. Los segmentos de memoria tienen un tamaño múltiplo de 16, de 0 a F en Hexadecimal. El rango total varía desde 0000 hasta un valor Hexadecimal que depende de la cantidad de semiconductores de memoria RAM con la que se haya configurado el sistema de la computadora.
Los segmentos de memoria se agrupan en diferentes Áreas de Trabajo que permiten delimitar las diversas funciones que se realizan en la memoria.
Las áreas de la memoria son:
• Memoria Convencional.
• Memoria Extendida.
La Memoria Convencional viene delimitada por la capacidad de direccionamiento de memoria de la CPU de la computadora y la capacidad de manejo de memoria que sea capaz de realizar el sistema operativo que gestiona el sistema informático.
Se puede ver un ejemplo en el microprocesador Intel 8088 que constituía la CPU de los primeros Personal Computer de IBM; este microprocesador era capaz de direccionar un máximo de 1 megabyte de memoria, por ello, las primeras versiones del sistema operativo que lo gestionaba no necesitaban manejar más de 640 kilobytes para poder realizar su trabajo.
En la actualidad, las unidades centrales de proceso, como el microprocesador 80486, pueden llegar a manejar hasta 4 gigabytes de memoria, por lo que los sistemas operativos como OS/2 o WINDOWS han previsto esta posibilidad, pudiendo manejar esa cantidad de memoria.
La Memoria Convencional se Divide en:
• Memoria Baja.
• Memoria Alta.
La Memoria Baja es el área de memoria del sistema. Ocupa las primeras direcciones de la memoria convencional y está ocupada por las tablas de los vectores de las interrupciones, las rutinas de la ROM-BIOS y la parte residente del sistema operativo.
La Memoria Alta, también se denomina área de memoria del usuario, es la zona en la que se sitúan los códigos de los programas ejecutables y los datos que éstos manejan en las diferentes aplicaciones que la computadora ejecuta.
Puede ocurrir que la memoria convencional, es decir, la memoria que existe en la configuración de la computadora no sea suficiente para poder realizar ciertas operaciones en ese sistema informático; para poder solventar ese problema se utiliza la memoria extendida.
La Memoria Extendida se utiliza en computadoras que poseen una CPU que puede direccionar una gran cantidad de memoria, más de 1 megabyte, asociada a sistemas operativos que permiten gestionarla correctamente, es decir, los sistemas operativos multitareas o multiusuarios como UNIX, WINDOWS, sistemas operativos LAN, etc.
Estos sistemas operativos permiten instalar el código de los programas de aplicaciones y los datos que éstos manejan fuera del área de la memoria convencional denominada área de memoria del usuario, pudiendo, por tanto, realizar más de un proceso al mismo tiempo o permitiendo trabajar a varios usuarios a la vez en la misma computadora, como en una red de área local.
Sin embargo, puede ocurrir que la memoria extendida no tenga el tamaño suficiente para que todos los procesos o todos los usuarios puedan realizar sus tareas al mismo tiempo; una solución que se utiliza para resolver este problema es una simulación de la memoria de trabajo llamada Memoria Virtual.
Esta memoria virtual consiste en que cuando el sistema informático intenta utilizar más memoria de trabajo que la que realmente existe, el gestor de la memoria salva una parte de la información que existe en la memoria, en el disco duro del sistema informático.
La parte de la memoria salvada en el disco se llama página; esta página de memoria almacenada queda disponible en la memoria de trabajo para ser utilizada por el sistema informático. Cuando la computadora necesite utilizar la información almacenada en la página guardada en el disco del sistema informático volverá a repetir el proceso salvando otra página de memoria en el disco y recuperando la que estaba almacenada en él.
La Memoria Virtual tiene Ventajas e Inconvenientes.
Entre las Ventajas merece la pena destacar que nos permite utilizar una gran cantidad de software, al mismo tiempo dentro del sistema informático, que de otra forma no se podría utilizar al no tener suficiente memoria y que nos permite utilizar mejor los recursos del sistema informático.
El principal Inconveniente que conlleva la memoria virtual es que si existe una excesiva cantidad de páginas se ralentiza considerablemente la velocidad de proceso del sistema informático al tener que acceder constantemente al disco, pudiendo, por ello, causar colapsos en los diferentes procesos.
Un tipo diferente de ampliación de la memoria de trabajo es la denominada Memoria Expandida. Este tipo de memoria utiliza una serie de bancos de memoria en forma de circuitos integrados que se añaden a la circuitería básica de la computadora.
El estándar de memoria expandida lo instituyeron Lotus, Intel y Microsoft, por lo que en algunos lugares puede aparecer como memoria LIM.
La memoria expandida utilizaba una zona de la memoria convencional para crear un mapa de la cantidad de memoria expandida que se añade al sistema informático. El mapa permitirá que, cuando un programa de aplicación lo solicite, el gestor de la memoria expandida distribuya por las diferentes páginas en que se dividen los bancos de memoria los datos que la aplicación no puede manejar en la memoria convencional.
Como los tipos de memorias vistos anteriormente, la Memoria Expandida tiene también ventajas e inconvenientes.
La principal Ventaja es que al no realizar accesos al disco del sistema informático es mucho más rápida que la memoria virtual, pero el Inconveniente con que se encuentra la memoria expandida es que como los que tienen que solicitar su utilización son los propios programas de aplicación, en este tipo de memorias sólo se pueden almacenar datos, debiéndose colocar el código de los programas de aplicación en la memoria convencional.
Existen dos tipos de memorias RAM:
• RAM Estáticas.
Son memorias RAM convencionales que mantienen la información almacenada en ellas permanentemente, mientras se mantenga la alimentación eléctrica.
• RAM Dinámicas (DRAM).
La diferencia fundamental entre este tipo de memorias y las memorias RAM estáticas es que debido a que la celda de memoria donde almacenan la información tiende a descargarse, por tanto a perder la información almacenada en ella, se ha de producir un «refresco», esto es, una regrabación de la información almacenada cada pocos milisegundos para que no se pierdan los datos almacenados.
La ventaja con respecto a las memorias RAM convencionales es su bajo costo para tamaños de memorias medios y grandes.
Un tipo específico de memorias DRAM son las VRAM (Vídeo RAM). Este tipo de memorias está diseñadas específicamente para almacenar los datos de vídeo de los sistemas informáticos. Estas memorias son especialmente útiles para manejar subsistemas de vídeo, ya que su necesidad de refresco constante permite un manejo más sencillo de las cambiantes señales de vídeo.
Memoria ROM
La ROM (Read Only Memory) es una «Memoria Sólo de Lectura». En ella sólo se puede leer la información que contiene, no es posible modificarla. En este tipo de memoria se acostumbra a guardar las instrucciones de arranque y el funcionamiento coordinado de la computadora.
Físicamente, las memorias ROM son cápsulas de cristales de silicio. La información que contienen se graba de una forma especial por sus fabricantes o empresas muy especializadas.
Las memorias de este tipo, al contrario que las RAM, no son volátiles, pero se pueden deteriorar a causa de campos magnéticos demasiado potentes.
La comunicación con el procesador se realiza, al igual que en las memorias RAM, a través de los buses de direcciones y datos.
Al existir sólo la posibilidad de lectura, la señal de control, que en la RAM se utilizaba para indicar si se iba a leer o escribir, sólo va a intervenir para autorizar la utilización de la memoria ROM.
Además de las ROM, en las que sólo puede grabar información el fabricante de la memoria, existen otros tipos de memorias no volátiles que se pueden modificar de diversas formas y son de una flexibilidad y potencia de uso mayor que las simples ROM. La utilización de este tipo de memorias permite a los usuarios configurar computadoras dedicadas a tareas concretas, modificando simplemente la programación de los bancos de memoria del sistema informático. Estas memorias son:
• PROM (Programable Read Only Memory o Memoria Programable Sólo de Lectura).
Las memorias PROM son memorias sólo de lectura que, a diferencia de las ROM, no vienen programadas desde la fábrica donde se construyen, sino que es el propio usuario el que graba, permanentemente, con medios especiales la información que más le interesa.
• EPROM (Erasable-Programable Read Only Memory o Memoria Borrable y Programable Sólo de Lectura).
Las EPROM tienen la ventaja, con respecto a las otras memorias ROM, de que pueden ser reutilizables ya que, aunque la información que se almacena en ellas permanece permanentemente grabada, ésta se puede borrar y volver a grabar mediante procesos especiales, como puede ser el mantenerlas durante treinta minutos bajo una fuente de rayos ultravioletas para borrarlas.
• EEPROM (Electrically Erasable-Programable Read Only Memory o Memoria Borrable y Programable Eléctricamente Sólo de Lectura).
Las EEPROM aumentan, más si cabe, su ventaja con respecto a los anteriores tipos de memorias, ya que la información que se almacena en ellas se puede manipular con energía eléctrica y no es necesaria la utilización de rayos ultravioletas.
Memoria Caché
La Memoria Caché es una zona especial de la memoria principal que se construye con una tecnología de acceso mucho más rápida que la memoria RAM convencional. La velocidad de la caché con respecto a la memoria RAM convencional es del orden de 5 a 10 veces superior.
A medida que los microprocesadores fueron haciéndose más y más rápidos comenzó a producirse una disfunción con la velocidad de acceso a la memoria de trabajo que se conectaba a ellos en el sistema informático.
Cada vez que el microprocesador del sistema informático accede a la memoria RAM para leer o escribir información tiene que esperar hasta que la memoria RAM está lista para recibir o enviar los datos. Para realizar estas operaciones de lectura y escritura más rápidamente se utiliza un subsistema de memoria intermedia entre el microprocesador y la memoria RAM convencional que es la denominada memoria caché.
El funcionamiento de la memoria caché se basa en que al cargar una información en la memoria principal (sean instrucciones o datos) ésta se carga en zonas adyacentes de la memoria. El controlador especial situado dentro del subsistema de la memoria caché será el que determine dinámicamente qué posiciones de la memoria RAM convencional pueden ser utilizadas con más frecuencia por la aplicación que está ejecutándose en ese momento y traslada la información almacenada en ellas a la memoria caché.
La siguiente vez que el microprocesador necesite acceder a la memoria RAM convencional existirá una gran probabilidad de que la información que necesita encontrar se encuentre en las direcciones de memoria adyacentes a las ya utilizadas. Como estas direcciones de memorias adyacentes ya se encuentran almacenadas en la memoria caché, el tiempo de acceso a la información disminuye en gran medida.
La utilización de algoritmos estadísticos de acceso a los datos permiten una gestión mucho más racional del manejo de la memoria RAM convencional, disminuyendo los tiempos de acceso a la memoria convencional y acercando ese tiempo de acceso al de la propia caché.
La memoria caché carga en su área de memoria propia el segmento de la memoria principal contiguo al que se está procesando. Debido a que, estadísticamente, existe una gran probabilidad de que la siguiente área de memoria que necesite la aplicación que está corriendo en ese momento sea la que se encuentra en el área de la caché, se optimiza el tiempo de acceso a la memoria, ya que debe recordarse que el acceso a la memoria caché es mucho más rápido que el acceso a la memoria RAM convencional.
El tamaño de las memorias caché más habituales oscila entre los 8 y los 64 kbytes.
Buses
El Bus es la vía a través de la que se van a transmitir y recibir todas las comunicaciones, tanto internas como externas, del sistema informático.
El bus es solamente un Dispositivo de Transferencia de Información entre los componentes conectados a él, no almacena información alguna en ningún momento.
Los datos, en forma de señal eléctrica, sólo permanecen en el bus el tiempo que necesitan en recorrer la distancia entre los dos componentes implicados en la transferencia.
En una unidad central de sistema típica el bus se subdivide en tres buses o grupos de líneas.
• Bus de Direcciones.
• Bus de Datos.
• Bus de Control.
Bus de Direcciones
Es un canal de comunicaciones constituido por líneas que apuntan a la dirección de memoria que ocupa o va a ocupar la información a tratar.
Una vez direccionada la posición, la información, almacenada en la memoria hasta ese momento, pasará a la CPU a través del bus de datos.
Para determinar la cantidad de memoria directamente accesible por la CPU, hay que tener en cuenta el número de líneas que integran el bus de direcciones, ya que cuanto mayor sea el número de líneas, mayor será la cantidad de direcciones y, por tanto, de memoria a manejar por el sistema informático.
Bus de Datos
El bus de datos es el medio por el que se transmite la instrucción o dato apuntado por el bus de direcciones.
Es usado para realizar el intercambio de instrucciones y datos tanto internamente, entre los diferentes componentes del sistema informático, como externamente, entre el sistema informático y los diferentes subsistemas periféricos que se encuentran en el exterior.
Una de las características principales de una computadora es el número de bits que puede transferir el bus de datos (16, 32, 64, etc.). Cuanto mayor sea este número, mayor será la cantidad de información que se puede manejar al mismo tiempo.
Bus de Control
Es un número variable de líneas a través de las que se controlan las unidades complementarias.
El número de líneas de control dependerá directamente de la cantidad que pueda soportar el tipo de CPU utilizada y de su capacidad de direccionamiento de información.
Arquitecturas de Bus
Dependiendo del diseño y la tecnología que se utilice para construir el bus de una microcomputadora se pueden distinguir tres arquitecturas diferentes:
• Arquitectura ISA.
• Arquitectura MCA.
• Arquitectura EISA.
• Arquitectura ISA.
• Arquitectura ISA
La Arquitectura ISA (Industry Standard Architecture en inglés) es la arquitectura con que se construyó el bus de los microcomputadores AT de IBM.
Esta arquitectura se adoptó por todos los fabricantes de microcomputadoras compatibles y, en general, está basada en el modelo de tres buses explicado anteriormente. Su tecnología es antigua, ya que se diseñó a principios de la década de los 80, lo que provoca una gran lentitud, debido a su velocidad de 8 megaherzios y una anchura de sólo 16 bits.
• Arquitectura MCA.
La Arquitectura MCA (MicroChannel Architecture en inglés) tuvo su origen en una línea de microcomputadoras fabricadas por IBM, las PS/2 (PS significa Personal System).
Las PS/2 fueron unas microcomputadoras en las que, en sus modelos de mayor rango, se sustituyó el bus tradicional de las computadoras personales por un canal de comunicaciones llamado MicroChannel.
El MicroChannel no es compatible, ni en su diseño ni en las señales de control, con la tecnología de bus tradicional, si bien su misión de transferencia de direcciones de memoria y datos es similar en ambos casos. Las ventajas de MicroChannel son una mayor velocidad, 10 megaherzios, una anchura de 32 bits, la posibilidad de auto instalación y una mejor gestión de los recursos conectados al canal gracias a un control denominado busmaster.
• Arquitectura EISA.
La Arquitectura EISA (Extended Industry Standard Architecture en inglés) surge como una mejora del estándar ISA por parte de un grupo de empresas fabricantes de microcomputadoras compatibles. La velocidad del bus aumenta, así como la posibilidad de manejo de datos, llegándose a los 32 bits en paralelo; asimismo posee auto instalación y control de bus.
La unión del aumento de la velocidad interna del bus y los 32 bits trabajando en paralelo permite a esta arquitectura una capacidad de manejo y transferencia de datos desconocida hasta ese momento, pudiendo llegar hasta los 33 megabytes por segundo.
La gran ventaja de la arquitectura EISA es que es totalmente compatible con ISA, esto es, una tarjeta de expansión ISA funciona si se la inserta en una ranura EISA. Evidentemente, no va a poder utilizar totalmente la potencia del nuevo estándar, funcionando a menor velocidad, pero funcionando al fin y al cabo.
En la actualidad no existe una arquitectura que tenga el suficiente peso específico como para desbancar totalmente al resto, si bien, poco a poco, la arquitectura ISA puede ir desapareciendo de las configuraciones de los sistemas informáticos dando paso a las otras dos arquitecturas.
El reloj de una computadora se utiliza para dos funciones principales:
1. Para sincronizar las diversas operaciones que realizan los diferentes subcomponentes del sistema informático.
2. Para saber la hora.
El reloj físicamente es un circuito integrado que emite una cantidad de pulsos por segundo, de manera constante. Al número de pulsos que emite el reloj cada segundo se llama Frecuencia del Reloj.
La frecuencia del reloj se mide en Ciclos por Segundo, también llamados Hertzios, siendo cada ciclo un pulso del reloj. Como la frecuencia del reloj es de varios millones de pulsos por segundo se expresa habitualmente en Megaherzios.
El reloj marca la velocidad de proceso de la computadora generando una señal periódica que es utilizada por todos los componentes del sistema informático para sincronizar y coordinar las actividades operativas, evitando el que un componente maneje unos datos incorrectamente o que la velocidad de transmisión de datos entre dos componentes sea distinta.
Cuanto mayor sea la frecuencia del reloj mayor será la velocidad de proceso de la computadora y podrá realizar mayor cantidad de instrucciones elementales en un segundo.
El rango de frecuencia de los microprocesadores oscila entre los 4,77 megaherzios del primer PC diseñado por IBM y los 200 megaherzios de las actuales computadoras basadas en los chips Intel Pentium.
TARJETAS DE EXPANSIÓN INTERNA
Las Tarjetas de Expansión están diseñadas y dedicadas a actividades específicas, como pueden ser las de controlar la salida de vídeo de la computadora, gráficas, comunicaciones, etc.
Las tarjetas de expansión no forman parte de la unidad central de proceso, pero están conectadas directamente a ésta a través del bus, generalmente dentro de la propia caja de la unidad central del sistema, y controladas por la CPU en todas sus operaciones.
Las tarjetas de expansión complementan y ayudan a la placa base y, por tanto, al microprocesador central descargándole de tareas que retardarían los procesos de la CPU, añadiendo al mismo tiempo una serie de posibilidades operativas que no estaban previstas en los primeros modelos de computadoras.
A lo largo de la historia del desarrollo de las computadoras se han ido aprovechando diseños técnicos anteriores para crear subcomponentes de sistemas informáticos de complejidad superior; un ejemplo puede ser el microprocesador 8086 que sirvió como microprocesador principal para una serie de sistemas informáticos, como fueron los PS/2 de IBM. En la actualidad puede emplearse como microprocesador de tarjetas gráficas dedicadas a controlar los subsistemas de vídeo.
Las tarjetas de expansión cumplen una importante cantidad de cometidos que van desde controlar actividades del proceso general del sistema informático (subsistema de vídeo, subsistema de almacenamiento masivo de información en los diferentes discos de la computadora, etc.) hasta permitir una serie de tareas para las que los diseñadores del sistema informático no han previsto facilidades o que debido a su costo sólo se entregan como opcionales.
Tarjetas Controladoras de Periféricos
Las Tarjetas de Expansión Controladoras de Periféricos son placas que contienen circuitos lógicos y que se conectan al bus de datos para recibir la información que la CPU envía hacia los periféricos almacenándola en Buffers, esto es, una serie de Memorias Intermedias que actúan como amortiguadoras de los flujos de datos que se transmiten en el interior del sistema informático y descargan al procesador principal del control del tráfico de señales y datos entre el procesador y los periféricos exteriores.
Las tarjetas de expansión controladoras de periféricos más importantes son:
• Las Tarjetas de Expansión Controladoras del Modo de Vídeo.
• Las Tarjetas de Expansión Controladoras de Entrada/Salida de Datos.
• Las Tarjetas de Expansión Controladoras de Comunicaciones.
Tarjetas de Expansión Controladoras del Modo de Video
Este tipo de tarjetas de expansión son también llamadas Tarjetas Gráficas. Las tarjetas gráficas van a proporcionar diferentes clases de calidad en la información que el sistema informático va a poder mostrar en su pantalla.
La información que la computadora va a representar en su pantalla se encuentra en una zona de la memoria RAM que alimenta periódicamente al cañón de electrones, a través de la tarjeta controladora del modo gráfico, de los datos necesarios para representar la información almacenada en la pantalla del sistema informático.
La pantalla de la computadora se refresca, esto es, modifica el dibujo que aparece en ella con una periodicidad de entre 50 y 80 veces por segundo. El dibujo que aparece en la pantalla del sistema informático es el almacenado en la memoria de vídeo de la computadora y que la tarjeta gráfica recibe para manejar los datos y enviarlos hacia la pantalla del sistema informático.
Cuando la tarjeta de vídeo envía la información almacenada en la memoria hacia la pantalla de la computadora, estos datos pasan por un convertidor digital/analógico para convertirse en una señal eléctrica compatible con la necesaria para que el componente de generación de imágenes de la pantalla del sistema informático (cañón de rayos, LCD, etc.) forme la imagen en la pantalla de la computadora.
Existen diferencias entre los distintos tipos de tarjetas gráficas entre las que caben destacar:
1. Modo de Trabajo.
Es como se va a manejar la información que se va a representar en la pantalla del sistema informático.
Los modos principales de trabajo son:
• Modo Texto: Se maneja la información en forma de texto, si bien algunos de estos caracteres pueden utilizarse para realizar dibujos sencillos.
• Modo Gráfico: Es más completo que el anterior ya que a la posibilidad del manejo de caracteres se une la de la creación de dibujos complejos.
2. Utilización del Color.
Algunas tarjetas de vídeo pueden manejar una serie de parámetros, en forma de código binario, que permiten la utilización del color en las pantallas de los sistemas informáticos que estén preparadas para ello. La utilización, o no, del color permite realizar la siguiente diferenciación:
• Monocromas: Utilizan sólo un color que resalta sobre el fondo de la pantalla de la computadora.
• Policromas: Utilizan la serie de tres colores fundamentales (rojo, azul y verde) para obtener las diferentes mezclas de colores y tonos que se van a representar en la pantalla del sistema informático.
3. Resolución Gráfica.
Es una matriz formada por la cantidad total de líneas de información y el número de puntos en que se puede dividir cada una de las líneas. Esta matriz es la información que la tarjeta gráfica envía hacia la pantalla de la computadora.
A continuación van a estudiarse los tipos de tarjetas gráficas más conocidas:
Tarjeta Gráfica Hércules.
Las tarjetas gráficas Hércules son tarjetas de vídeo que trabajan en modo gráfico en sistemas informáticos cuya configuración incluye pantallas monocromas.
Fueron diseñadas por Hércules Corp. para poder crear gráficos en las pantallas monocromas de las primeras computadoras personales debido a que la tarjeta de vídeo que incluían estos sistemas informáticos, el Adaptador Monocromo de IBM, sólo podía trabajar en modo texto.
Debido a que Hércules Corp. era una empresa independiente, IBM nunca consideró a la tarjeta de vídeo creada por ella como un estándar, aunque sí lo fue de hecho.
Este modelo de tarjeta de vídeo posee una resolución gráfica de 720 puntos por 348 líneas.
Tarjeta Gráfica CGA.
La tarjeta gráfica CGA (Color Graphics Adapter-Adaptador de Gráficos Color) fue diseñada para introducir el color en el mundo de la microinformática.
Las tarjetas gráficas CGA trabajan en los modos texto y gráfico, pudiendo conectarse a ellas pantallas de computadora monocromas y de color.
El problema que presentan las CGA es que su resolución gráfica es muy pobre en comparación con el resto de las tarjetas gráficas del mercado, siendo de 640 puntos por 240 líneas en modo monocromo y de 320 puntos por 200 líneas trabajando con cuatro colores.
Tarjeta Gráfica EGA.
La EGA (Enhanced Graphics Adapter-Adaptador Mejorado de Gráficos) es una tarjeta de vídeo que trabaja en modo gráfico y mejora en gran medida las prestaciones de la CGA. Esta tarjeta gráfica trabaja con pantallas de computadora monocromas o de color.
La resolución de la tarjeta gráfica EGA es de 640 puntos por 350 líneas y maneja hasta 16 colores al mismo tiempo.
Tarjeta Gráfica MCGA.
Esta Tarjeta Gráfica (Microchannel Graphics Adapter - Adaptador Gráfico Microchannel) fue diseñada por IBM para trabajar en sus microcomputadoras del tipo PS/2.
La MCGA tenía una resolución máxima de 640 puntos por 400 líneas en modo monocromo, reduciéndose a medida que se aumentaba el número de colores con que se trabajaba.
Tarjeta Gráfica VGA.
La Tarjeta Gráfica VGA (Video Graphics Adapter - Adaptador Vídeo de Gráficos) se diseñó, como la anterior, para los sistemas informáticos PS/2 de IBM. La diferencia entre ambas tarjetas gráficas es que si la anterior se instaló en los sistemas informáticos menos potentes, la VGA se instaló en los sistemas informáticos más potentes de la gama PS/2, debido a su mejor resolución.
Al contrario que la MCGA, la tarjeta gráfica VGA sí tuvo un modelo compatible con el bus habitual de los sistemas PC y gracias a su calidad de diseño y fabricación ha llegado a convertirse en un estándar dentro del mercado microinformático.
La resolución de esta tarjeta gráfica tiene dos modos distintos:
• La resolución en modo texto es de 720 puntos por 400 líneas manejando los dos colores del monocromo.
• La resolución en modo gráfico es de 640 puntos por 480 líneas y maneja 16 colores.
Tarjeta Gráfica SVGA.
La tarjeta gráfica SVGA (Super Video Graphics Adapte - Super Adaptador Vídeo de Gráficos) es un diseño de reciente creación. Ha sido introducida en el mercado como una tarjeta gráfica VGA, ampliada y mejorada, que rápidamente está consiguiendo una importante cuota de instalación en las configuraciones de los nuevos sistemas informáticos.
La posibilidad de manejo por la propia tarjeta gráfica de un megabyte de memoria DRAM, que puede ampliarse hasta los dos megabytes, supone una importante potencia gráfica que da, a los sistemas microinformáticos, posibilidades de manejo de gráficos que antes sólo podían realizar las estaciones de trabajo o las minicomputadoras.
La resolución de esta tarjeta gráfica es muy alta, llegando a los 1.280 puntos por 1.024 líneas.
Tarjetas Controladoras de Entrada y Salida de Datos
La función principal de estos dispositivos es adaptar la información procesada por la unidad central de proceso, canalizando las transferencias de información entre la computadora y los dispositivos periféricos exteriores.
Con las tarjetas controladoras de entrada y salida de datos se consigue:
1.    Independencia funcional entre la unidad central de proceso y los periféricos asociados a ella. Las tarjetas controladoras evitan la lentitud de los procesos debido a la diferencia de velocidad entre la CPU y los periféricos.
2.    Adaptación de diversos tipos de periféricos al sistema informático, independientemente de que la operatividad entre ellos y la computadora no sea compatible.
3.    Pueden servir de traductoras entre el modo digital de la computadora y el analógico del de otros medios por los que se pueden establecer enlaces entre sistemas informáticos.
Tarjetas Controladoras de Comunicaciones
Las Tarjetas Controladoras de comunicaciones son unidades que permiten la conexión de una computadora central, denominada sistema central o servidor, con una serie de computadoras menos potentes que utilizan parte de los recursos del servidor para aumentar su operatividad.
La conexión se produce a través de una serie de Enlaces que unen todas las computadoras entre sí formando una Red de Comunicaciones.
Si los sistemas informáticos que constituyen esta red de comunicaciones se encuentra en una zona no muy extensa, no mayor que un edificio, la red se denomina Red de Área Local (LAN - Local Area Network).
Si la red de comunicaciones tiene una extensión mayor y se utilizan los servicios de las compañías telefónicas para enlazar las diferentes computadoras que componen la red, ésta se denomina Red de Área Extensa (WAN-Wide Area Network).
Las tarjetas controladoras de comunicaciones más comunes son las tarjetas de conexión a redes de área local. Este tipo de tarjetas de comunicaciones se estudiarán más adelante en un apartado específico dedicado a ella; sin embargo, se puede adelantar aquí que las tarjetas controladoras de comunicaciones se dividen en dos grupos principales:
• Tarjetas de conexión a redes locales (LAN).
• Tarjetas de expansión módem (para redes de comunicaciones extensas).
Las tarjetas de conexión a redes LAN son tarjetas de expansión que proporcionan una Conexión y una Dirección que permiten identificar al usuario en el interior de la red, posibilitándole el poder enviar y recibir información al sistema informático.
La conexión que proporcionan las tarjetas de conexión a redes de área local es a un cable coaxial muy similar al utilizado para conectar una televisión comercial a su antena exterior. La velocidad que este medio permite dentro de la red de comunicaciones es, sin embargo, inferior a la que poseen los sistemas informáticos conectados a ella, rondando unos pocos megaherzios.
Las tarjetas de expansión módem modulan la señal digital existente dentro de la unidad central del sistema de la computadora y la transforman convirtiéndola en analógica.
Esta señal analógica se superpone a otra señal llamada portadora, que es la que viaja por el cable telefónico, sobre la que va a poder atravesar las líneas telefónicas hasta un punto remoto donde otro módem volverá a convertir la señal en digital para que pueda ser utilizada por otra computadora.
Las velocidades de transmisión que proporcionan este tipo de tarjetas de expansión módem oscilan entre los 1.200 y los 28.800 bits por segundo.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TIPOS DE COMPUTADORAS
 
Supercomputadoras
Una supercomputadora es la computadora más potente disponible en un momento dado. Estas máquinas están construidas para procesar enormes cantidades de información en forma muy rápida. Las supercomputadoras pueden costar desde 10 millones hasta 30 millones de dólares, y consumen energía eléctrica suficiente para alimentar 100 hogares.
Macrocomputadoras
La computadora de mayor tamaño en uso común es el macrocomputadora. Las macrocomputadoras (mainframe) están diseñadas para manejar grandes cantidades de entrada, salida y almacenamiento.
Minicomputadoras
La mejor manera de explicar las capacidades de una minicomputadora es diciendo que están en alguna parte entre las de una macrocomputadora o mainframe y las de las computadoras personales. Al igual que las macrocomputadoras, las minicomputadoras pueden manejar una cantidad mucho mayor de entradas y salidas que una computadora personal. Aunque algunas minis están diseñadas para un solo usuario, muchas pueden manejar docenas o inclusive cientos de terminales.
Estaciones de trabajo
Entre las minicomputadoras y las microcomputadoras (en términos de potencia de procesamiento) existe una clase de computadoras conocidas como estaciones de trabajo . Una estación de trabajo se ve como una computadora personal y generalmente es usada por una sola persona, al igual que una computadora. Aunque las estaciones de trabajo son más poderosas que la computadora personal promedio. Las estaciones de trabajo tienen una gran diferencia con sus primas las microcomputadoras en dos áreas principales. Internamente, las estaciones de trabajo están construidas en forma diferente que las microcomputadoras. Están basadas generalmente en otra filosofía de diseño de CPU llamada procesador de cómputo con un conjunto reducido de instrucciones (RISC), que deriva en un procesamiento más rápido de las instrucciones.
 
Computadoras personales
Pequeñas computadoras que se encuentran comúnmente en oficinas, salones de clase y hogares. Las computadoras personales vienen en todas formas y tamaños. Modelos de escritorio El estilo de computadora personal más común es también el que se introdujo primero: el modelo de escritorio. Computadoras notebook Las computadoras notebook, como su nombre lo indica, se aproximan a la forma de una agenda. Las laptop son las predecesoras de las computadoras notebook y son ligeramente más grandes que éstas. Asistentes personales digitales Los asistentes personales digitales (PDA)son las computadoras portátiles más pequeñas. Las PDA, también llamadas a veces palmtops, son mucho menos poderosas que los modelos notebook y de escritorio. Se usan generalmente para aplicaciones especiales, como crear pequeñas hojas de cálculo, desplegar números telefónicos y direcciones importantes, o para llevar el registro de fechas y agenda. Muchas pueden conectarse a computadoras más grandes para intercambiar datos.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CONCLUCION
Como pudimos darnos cuenta los componentes de la computadora son básicos para que esta funcione; lo principal que debe tener una computadora; es…
Unidad central de proceso
Unidades de memoria
Hardware
Software
Estas son los principales requerimientos para que un equipo de computo funcione o haga sus funciones correctamente.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BIBLIOGRAFIA
Es.wikipedia.org/wiki/computación-39k
ar.geocites.com/cdegiotic/sistema/tipos.htm-7k
 
 
 


 
 
Hoy habia 8 visitantes (8 clics a subpáginas) ¡Aqui en esta página!

Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis